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Carnot’s theorem as Noether’s theorem for thermoacoustic engines

Eric Smith
Los Alamos National Laboratory, Earth and Environmental Sciences Division, Los Alamos, New Mexico 87545

and Applied Research Laboratories, The University of Texas at Austin, Austin, Texas 78713-8029
~Received 30 March 1998!

Onset in thermoacoustic engines, the transition to spontaneous self-generation of oscillations, is studied here
as both a dynamical critical transition and a limiting heat engine behavior. The critical transition is interesting
because it occurs for both dissipative and conservative systems, with common scaling properties. When
conservative, the stable oscillations above the critical point also implement a reversible engine cycle satisfying
Carnot’s theorem, a universal conservation law for entropy flux. While criticality in equilibrium systems is
naturally associated with symmetries and universal conservation laws, these are usually exploited with global
minimization principles, which dynamical critical systems may not have if dissipation is essential to their
criticality. Acoustic heat engines furnish an example connecting equilibrium methods with dynamical and
possibly even dissipative critical transitions: A reversible engine is shown to map, by a change of variables, to
an equivalent system in apparent thermal equilibrium; a Noether symmetry in the equilibrium field theory
implies Carnot’s theorem for the engine. Under the same association, onset is shown to be a process of
spontaneous symmetry breaking and the scaling of the quality factor predicted for both the reversibleand
irreversible engines is shown to arise from the Ginzburg-Landau description of the broken phase.
@S1063-651X~98!00209-8#

PACS number~s!: 05.70.Jk, 43.35.1d, 43.20.1g
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I. INTRODUCTION: THERMOACOUSTIC ONSET AS A
CRITICAL TRANSITION

The local gas dynamics and mode stability of vario
thermoacoustic engines are subjects treated extensively
in considerable quantitative detail, in the acoustics literat
@1–10#. Many global engine properties, though, in particu
the striking qualitative resemblance of the driven sound
tensity to the order parameter in a classical critical transiti
have not been considered at all. The critical interpretation
thermoacoustic onset is developed here because it exp
two relations between equilibrium and dynamical critic
systems, which may have expressions as more general
ciples. The first is that reversibility, in some sense, is ind
tinguishable from equilibrium. The second is that Carno
theorem, a thermodynamic transport relation for engin
may be viewed as a consequence of spontaneous symm
breaking, describing a Noether current for the symmetry h
den by the critical transition.

Complete generality is not attempted in this derivatio
Rather, the approach is to demonstrate these relations
thorough analysis of a specific engine and then show in w
respects it represents more general cases. Though no co
rable, global treatment of the particular cycle considered h
has been done before, enough of the results coincide
those in the standard thermoacoustics literature that stra
forward aspects of the dynamical analysis are relegate
two appendixes, so the main text can focus on issues
criticality.

A. Heuristics

A simple thermoacoustic engine consists of a gas reso
tor, a stack of plates or matrix of pins~generically called a
‘‘stack’’ ! in the flow stream of the gas to act as a regenera
PRE 581063-651X/98/58~3!/2818~15!/$15.00
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and connections at the stack ends to hot and cold reserv
@4#. The temperature difference between the reservoirs
poses a thermal gradient on the stack. For gradients belo
critical value determined by properties of the gas and re
nator, the gas is quiescent, the reservoirs exchange heat
by conduction, and any sound excited in the resonator dec
exponentially. As the gradient approaches the critical va
from below, the time constant for decay of the fundamen
resonator mode diverges or, equivalently, the inverse of
quality factor goes to zero@5#. For driving gradients above
the critical value, from quiescent initial conditions, oscill
tions of the lowest mode are spontaneously generated
initially grow exponentially, later slowing as the sound i
tensity approaches some saturation value. The~negative! in-
verse quality factor above the critical gradient describes
growth time constant and is the smooth continuation of t
inverse quality function for decay, through the critical poi
@6#. If the driving gradient is reduced to critical from abov
the saturation value of sound in the engine goes to zero w
some steep slope@11#.

This process corresponds heuristically to a classical ph
transitions as follows: Statistical phonons in the resona
though classical field excitations, are the ‘‘microscopic’’ d
grees of freedom of the system. For thermal driving gra
ents below critical, their mean value is zero and time tra
lation, which implies conservation of energy in the engin
reservoir system, is also~trivially ! a symmetry of the
classical sound background. Above the critical gradient,
tistical phonons ‘‘freeze’’ into the coherent sound mo
implementing the engine cycle. While time translation is s
a continuous symmetry of the microscopic dynamics and
ergy in the engine/reservoir system is still conserved, t
symmetry is not manifest in the excited mode, which is p
served only under discrete shifts by a multiple of the cy
period.
2818 © 1998 The American Physical Society
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PRE 58 2819CARNOT’S THEOREM AS NOETHER’S THEOREM FOR . . .
The intensity of excited sound at saturation thus serve
an order parameter and the temperature gradient along
thermoacoustic driving stack, appropriately nondimension
ized with the mean engine temperature and sound wa
length, is the effective coupling controlling the transitio
The stable intensity in the running state has the nonana
dependence on the coupling~identically zero for gradients
below critical, finite for gradients above! characteristic of
equilibrium critical systems with spontaneously broken sy
metry @12#.

The symmetry broken by onset is time translation in
engine/reservoir system. Phase coherence of the wor
cycle has long-range order in time, consistent with the id
tification of the running engine state as its ‘‘frozen’’ stat
From this correspondence, one would expect a thermoac
tic engine on the critical point to be characterized by pha
coherent episodes of running of all durations, with so
scale-free~e.g., 1/f ) statistics. The running state near th
critical point should display a weak coherent backgrou
with superposed phase noise having a possibly universal
tribution @13# ~phase fluctuations being the Goldstone mo
generated by local time translation of the coherent ba
ground!.

No such nontrivial scaling properties of onset have be
measured@14#. However, the inverse of the quality factorQ,
a temporal coherence length in units of cycle period,
been studied for standing-wave enginesthroughonset@5,6#.
Measured 1/Q was linearly proportional to the driving gra
dient, in agreement with stack gain predictions. This cla
cal scaling relation will be shown below to correspond to
mean-field prediction of Ginzburg-Landau theory and p
vides one indication that onset is critical.

B. Criticality and symmetry

In equilibrium systems, criticality is generally associat
with spontaneous symmetry breaking@15# because such tran
sitions create scale-free correlations at finite physical te
peratures@16#. A corollary of this association, that critica
systems have degenerate frozen backgrounds related by
den symmetries, has profound implications, such as G
stone’s theorem@17#. However, whereas the symmetries
equilibrium critical systems can often be encoded in a c
sical Ginzburg-Landau free energy@18#, dynamical critical
processes are often intrinsically dissipative@19#, so their
governing equations cannot be obtained from the conse
tive sector of a classical action alone.

Acoustic heat engines are interesting in view of this
chotomy because versions exist with either intrinsically d
sipative @3,4#, or nonintrinsically dissipative cycles@7,8#.
Onset is much the same at the level of the equations of
tion in both cases, but as will be shown below, the nond
sipative engine may be mapped by a change of field v
ables to an equilibrium system, described by a classical
energy, with a spontaneously broken symmetry and imp
tant associated conservation law.

The one universal relation satisfied by all reversible
gines is Carnot’s theorem@20#. It is shown here that, for the
reversible~necessarily nondissipative! thermoacoustic cycle
Carnot’s theorem is implied by a Noether symmetry of t
equilibrium action functional, in the same manner as cons
as
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vation of energy. The only requirements are reversibili
expressed as the equivalence to equilibrium, finite temp
ture, and spontaneously broken time-translation invarian
which defines the engine cycle. Recovery of Carnot’s th
rem from the correct, minimal set of physical conditions w
be argued to validate the mapping from the reversible eng
to its equivalent equilibrium representation, and the symm
tries uncovered may provide a starting point for analysis
dissipative cases.

C. Phonon engines at finite temperature

Much of the practical interest in thermoacoustic engine
due to their simplicity@4#; realistic working fluids are near
ideal gases and a wide neighborhood of onset is well
scribed with linear acoustics and second-order, mean-fi
transport.All relevant excitations are thus phonons, w
resonator modes and the statistical fluctuations that de
the ideal gas differing only in scale. A simple requirement
consistency, that all phonons be defined on the same
figuration space, induces the Noether symmetry leading
Carnot’s theorem.

The field theory for fixed-temperature ideal gas is defin
on a complex, periodic ‘‘time cylinder’’ by the Matsubar
construction@21#. Its analytic coordinate ist2 i t, t denoting
physical time andt periodic at the inverse temperature. A
analysis of the simplified, reversible thermoacoustic cycle
presented below, in Sec. II, which extends this construct
to include all modes in the engine/reservoir system on
equal footing.

Any assumption of reversibility implicitly requires tha
integration over small-scale statistical fluctuations lead
corrections that can be absorbed into a conservative effec
action. The action satisfying this requirement locally for t
ideal gas is given in Sec. II A. The reservoir and stack c
plings that define a thermoacoustic engine from a sim
ideal gas resonator are then introduced in Sec. II B and
whole-engine dynamics derived in two appendixes. T
analysis shows both that a nontrivial engine cycle is p
served in a well-defined reversible limit and how pheno
enological couplings, first introduced in the equations of m
tion, can be incorporated as Lagrange multipliers to exte
the local action for the ideal gas to a variational descript
of the whole engine/reservoir system.

A further consistency requirement is then imposed in S
III: that the coordinate slicing and associated current con
vation laws of the local Matsubara manifold be extendib
globally. This requirement identifies the change of field va
ables representing the reversible engine as an equilibr
critical system, in Sec. III A. The conservation law asso
ated with spontaneous time-translation breaking is th
shown to be Carnot’s theorem, proved in a general form
Sec. III B. That the one universal theorem for reversible
gines is implied by precisely these consistency condition
taken as theira posteriorijustification and also as a check o
the assumption of reversibility.

The relation ofQ scaling to the Ginzburg-Landau de
scription of the equilibrium system and the way the classi
equivalence to equilibrium would become inadequate fo
reversible engine with a nonzero critical temperature are
cussed briefly in Sec. IV.
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2820 PRE 58ERIC SMITH
II. VARIATIONAL DESCRIPTION OF THE ACOUSTIC
STIRLING ENGINE

Before approaching Carnot’s theorem in general term
is necessary to show that a reversible, all-phonon engin
definable, has onset properties representing the more ge
case, and can be described completely with an action p
ciple. This is not possible~in any elementary way! for the
intrinsically irreversible, standing-wave ‘‘thermoacous
cycle’’ @3,4#, which is driven by phase-lagged conductio
transverse to the gas flow, in a finite-width boundary lay
Ceperley observed@7#, however, that the different pressur
velocity phasing of traveling waves transports heat by
Stirling cycle @22#, so in principle an annular resonator ca
be driven reversibly at finite work flux@23#. The driving
conduction will be seen to be in phase with temperature fl
tuations and thus compatible with variational representat
as expected for a reversible cycle.

The Ceperley engine is shown schematically in Fig. 1.
annular resonator of circumferenceL, filled with an ideal
gas, is connected thermally to two reservoirs at temperat
TH and TC and otherwise mechanically and thermally is
lated. The connection is through heat exchangers a dist
d!L apart, at either end of a prime mover stack.

The Ceperley stack resembles the standing-wave stac@4#
except that pure in-phase conduction takes place only a
base of thermal boundary layers, so the stack plate spa
must be assumed much smaller than the thermal penetr
depth. The idealized stack function in the Stirling limit is
enforce a constraint of fixed temperature. Viscosity and
pedance mismatches from complex flow, either in the st
or around the annulus, will be ignored@24#. Because conduc
tive structure transverse to the gas flow is not needed,
resonator may be modeled as a periodic, one-dimensi
volume of ideal gas; with appropriate parameter choices
low, this description will then be extended to include
parts of the engine.

A. Action for the adiabatic ideal gas

The variational description of the adiabatic ideal gas
simplest in Lagrangian coordinates. Time is labeledt and
position in the gas is labeled by an accumulated mass c
dinate m, from some arbitrary comoving origin~i.e., for a
positionx in the annulus,m[*xr dx modM , wherer is the
mass density as a function of position and time andM is the

FIG. 1. Geometric arrangement of the annular thermoacou
stack engine. Short parallel lines beneath the arrows represent
exchangers and the longer parallel lines represent the prime m
stack. Squares represent reservoirs at the indicated temperatu
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total mass of gas!. In Lagrangian coordinates,x(t,m) is a
dynamical embedding field andr[(]x/]m)21. The local
velocity v[(dx/dt)m and the convective derivative i
(d/dt)m5(]/]t)x1v(]/]x) t . It follows that (]/]x) t
5r(]/]m) t ; subscripts may now be omitted without amb
guity and the continuity equation is a tautology:

dr

dt
5

d

dtS 1

]x/]mD52r2
d

dtS ]x

]mD52rS ]v
]xD . ~1!

For particle massm and Boltzmann’s constantkB , units with
kB /m51 will be assumed.

Inviscid, nonconductive equations of motion and a co
straint of adiabatic evolution are generated by the effec
action

S5E dt R dmH v2

2
2

T

g21
1TF 1

g21
ln

T

T0
2 ln

r

r0
G J .

~2!

~The m integral is periodic when describing the resona
gas.! Variation of Eq.~2! with respect tox gives

dv
dt

52
]

]m
~rT!, ~3!

identifying the equation of statep5rT. Variation with re-
spect toT gives conservation of the specific entropy at c
moving coordinatem,

s2s0[
1

g21
ln

T

T0
2 ln

r

r0
50. ~4!

The action~2! may be definedby the requirement that i
recover these equations of motion and constraint, but i
also the analytic continuation of the usual free energy, exc
that x and T may vary, subject to the constraint~4!. The
continuation is performed by rotatingt→2 i t to give the
Euclidean action

2 iS→SE5E dt R dmH 1

2S dx

dt D 2

1
T

g21

2TF 1

g21
ln

T

T0
2 ln

r

r0
G J

5E dt R dm@u2Ts#1S E dt kBTDNs0.

~5!

N5rdm/m is the number of particles and the internal ener
of the gas~kinetic energy plus enthalpy! is u5(dx/dt)2/2
1T/(g21). If the coordinatet is made periodic with period
b51/kBT, thenSE→bF, whereF is the usual free energy o
the microcanonical ensemble, up to additive constants
do not depend onT or x. 1/(g21)[n/2, wheren is the
number of independent degrees of freedom in the usual
uipartition computation of the thermodynamic free ener
@25#. Thusg[cp /cV has the correct dependence onn @20#.
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The field theory based on Eq.~5! has the Matsubara form
@21#. (dx/dt)2/2 may be recognized as the specific kine
energy density of the free phonon gas and is the only term
a ‘‘bare’’ free-phonon action. Correlations in an effectiv
theory for long-wavelength modes are obtained by integ
tion over the short-wavelength statistical fluctuations. At u
form temperature andx[0, this average produces the equ
librium free energyF, the form of which shows that both th
correction to the specific energy densityu and the specific
entropys are local quantities. If the average is performed
an operator expansion about slowly varyingx, the same local
terms correct the bare equations of motion generated by
free-phonon action@26#. For a nondissipative system, how
ever, it must be possible to reabsorb these corrections
the effective action, and local correspondence with the eq
tion of state generated by the equilibrium free energy th
requires that action to take the form~5!. ~In other words, one
can define the nondissipative, variable-x,T action as the sum
of actions for ideal gas parcels, separated by imaginary in
lating boundaries, so that the compression of each parce
the walls of its neighbors is that of an equilibrium ideal ga!
The Matsubara condition that all correlations on the Euc
eant contour continue analytically tot then implies that the
Euclidean effective action generating them continues to
dynamical form~2!. Requiring that this representation be i
variant, up to scale changes, irrespective of where the d
sion between dynamical and statistical phonons is drawn
equivalent to requiring a scale-invariant treatment of
phonons in the system.

B. Addition of conductivities

As noted, one expects that although the Ceperley cy
requires conductive effects, in the reversible limit only tho
that can be incorporated in modifications of the actions~2!
and~5! should be needed. However, dissipative conductiv
is useful as a regulator when solving the equations of mo
and extends the solutions to encompass a range of m
physically realistic models. Therefore, both conservative
dissipative conductivities will be included temporarily in th
dynamical equations and the dissipative terms taken to
at the end. The main resonator may be given a simple p
nomenological bulk conductivity, while conductive effects
the stack are defined from the outset in terms of the des
constraint of nonfluctuating temperature.

The evolution of the internal energy of some comovi
region of the gas follows from the equation of motion~3!:

d

dtEm1

m2
dmS v2

2
1

T

g21D
5E

m1

m2
dmH 2v

]

]m
~rT!1T

dlnr

dt
1T

ds

dtJ
5E

m1

m2
dmH 2

]

]m
~vrT!1T

ds

dtJ
5E

x~m1 ,t !

x~m2 ,t !
dxH 2

]

]x
~vrT!1rT

ds

dtJ . ~6!

Bulk conductivity and source coupling specify the form
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the second term on the right-hand side of Eq.~6!. Energy is
conserved wheneverrTds/dt52] j cond/]x, for an arbitrary
conduction currentj cond. The first term on the right-hand
side of Eq.~6! is the divergence of the work flux curren
vrT. The convected enthalpy currentrvT/(g21) comes
from expanding the convective derivative on the left-ha
side. Convected kinetic energy is of orderv3 and will be
ignored.

Away from the stack, energy is conserved and the st
dard phenomenological conduction current is

j cond52
kg

g21
r

]T

]x
, ~7!

where k is the thermal diffusivity@4#. ~It is convenient to
define a rescaled diffusivityk̃[kg, absorbing the ratio of
specific heats, to reduce later notation.!

The constraint]T/]t50 of perfect thermal coupling, as
sumed to hold in the interior of the stack, does not conse
comoving enthalpy. Therefore, as observed for both Stirl
and more weakly coupled stacks@8,9#, longitudinal conduc-
tion in the stack cannot be assumed to vanish. It can, h
ever, be idealized as providing exactly the backward h
transport required to compensate for the gain in the sta
which is the implicit content of the constraint. The net effe
of conductivity in the stack will therefore be represent
with a simple weight functions(x) to give the relative con-
tributions of adiabatic and isothermal evolution of the e
tropy,

~g21!rT
ds

dt
5

]

]xS k̃r
]T

]x D ~12s!

1Frv
]T

]x
1~g21!rT

]v
]xGs. ~8!

To solve for the behavior of the engine,s will be taken as a
simple scalar function, identically 1 inside the stack, iden
cally 0 outside the heat exchangers, with some smooth t
sitional behavior between the two regions. Ifs is nearly a
step function, boundary layer effects will define the physi
coupling dynamically, independently of the detailed form a
sumed. To then relate the solutions to symmetries of
ideal gas, the scalar function will be replaced with a dynam
cal representation of the local reservoir positions along
stack and an equivalent implementation ofs(x) in the ac-
tion, via Lagrange multipliers.

C. Stability and transport results

The wave equation is the time derivative of Eq.~3!:

d2v

dt2
5

]

]mS grT
]v
]x

2~g21!rT
ds

dt D ~9!

~recovering the speed of sound for small perturbations
gkBT5mc2 when ds/dt50). Its solution with the entropy
evolution of Eq.~8! gives the stability properties of resonat
modes. For the annular engine, however, the absence of p
sure boundaries makes imposed temperature gradien
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2822 PRE 58ERIC SMITH
more important impedance discontinuity than they are
standing waves@9#, so the phasing of the modal eigenvecto
cannot be assumeda priori.

Equations ~8! and ~9! will therefore be solved self-
consistently to second order in small sound pressures. W
angular brackets denoting the time average of any quan
over some complete number of cycles, the mean and o
latory parts of the temperature field are given in terms ov
by the average of Eq.~8! outside the stack:

K ]

]xS k̃r
]T

]x D L 5 K rS ]T

]t
1v

]T

]x D1~g21!T
]v
]xL . ~10!

Vanishing of linear-order oscillations relates temperature
velocity fluctuations and the static mean temperature is t
solved in terms of the transport invariants around the an
lus, represented by the cycle averages of second-order q
tities as in Ref.@4#. The algebra for these steps is perform
in Appendix A.

The resulting static backgroundT is then substituted into
Eq. ~9!, which is solved as an eigenvalue-eigenvector pr
lem at linear order to find the independent modesv and their
frequencies in Appendix B. The mean temperature soluti
of Eq. ~10! are parametrized by sound intensity, convec
mass transport, and a parametera, which measures the rati
of standing to traveling components in the eigenfunction a
the standing component phase. In general, they do not
respond to purely real frequencies for the oscillating com
nents, so small instabilities are assumed, to permit sens
cycle averages.

At nonzero dissipative conductivity, boundary layers
the ends of the stack are found to extend the original,r
valued coupling strengths to a complex coupling
(s82 id), given in Eq.~A7! and shown in Fig. 2. The rea
part of the differences82s merely hides the detailed form
of the coupling function at the stack ends in a conduct
transition region. This thermal averaging will be exploit
below to model the stack region as a set of discrete, mutu
decoupled thermal reservoirs~Swift’s ‘‘bucket brigade’’ @4#,
though for the Stirling cycle!, each tied by ad function of
temperature to the instantaneously adjacent volume of ga
the resonator.

The imaginary part of the dynamical couplingid per-
forms an interesting refrigeration cycle in realistic mode

FIG. 2. Form of the boundary-layer coupling functionss8 and
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which is relevant to the saturation value of the sound int
sity L. However, becaused, a dissipative, pure loss term, i
not needed to define the working cycle, it can be elimina
by taking k̃→0. As long as the stack plate spacing rema

smaller than the boundary layer thicknessAgdk[A2k̃/v in
the limit, s8→s, but otherwise the conductive coupling re
mains unchanged.

The final result of the appendixes is that the scaling
pendence of the quality factor on the temperature differe
TH2TC and on mode number is the same as for
standing-wave case@6#. The quality factorQ is defined from
the imaginary part of the modal eigenfrequency for ea
mode, as given in Eq.~B17!, by

2
1

Q
[

d lnL

v dt
5

22 Im~v!

v
. ~11!

For perturbations aboutL50, Eqs.~B17! and~11! reduce at
leading order in (TH2TC)/TC[DT/T to 21/Q
5DT/2p j gT for mode j , giving a growth time independen
of mode number. Corrections from effects such as bulk c
ductivity and losses in boundary layersd of finite thickness,
as given in Eq.~B16!, modify the reversible result to

2
1

Q
5

1

2p j

DT2Tcrit

gT
, ~12!

whereTcrit /T5a(g21)kjAgdk(v) andkj is the wave num-
ber of the j th mode in the resonator. Therefore, modes w
either steeper velocity gradients or greater projection of th
gradients onto the boundary regions also suffer larger crit
temperatures to onset. This too is in qualitative agreem
with the results of Ref.@5#. Though this model omits too
many physical effects for more direct comparison to
meaningful, it does show that the qualitative dependence
modal onset parameters on various gain and loss effec
similar for the traveling-wave and the standing-wave cycl
when both operate in irreversible regimes.

III. REVERSIBILITY AS EQUILIBRIUM

In Eq. ~5!, the periodicity of the Matsubara manifold wa
defined in terms of the temperatureT. This prescription is
straightforward for isothermal equilibrium systems, but n
obviously sensible ifT is a dynamical field, because then th
coordinates for fluctuations are defined in terms of the fl
tuations themselves. Yet the adiabatic changes of state
reversible transformation strongly resemble otherwise me
ingless scale transformations in the description of an equ
rium system. Therefore, it should be possible to ensure w
defined coordinate slicing of the Matsubara manifold, wh
admitting temperature fluctuations, by regarding tempera
as a metriclike scale factor and different states of the a
batic ideal gas as identical up to classical rescalings of so
canonical base manifold. The transformation from physi
embedding coordinates to the canonical base manifold
fines the equivalent equilibrium system and assumes phys
significance of the new conservation law associated w
scale transformations.
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A. The equivalent equilibrium system

One may transform Lagrangian coordinates from (t,m) to
a new set (z,m), with ]t/]zum[b/b0, to place Eq.~2! in an
equivalent form

S@ t,x#5E dzE dmH 1

2

~]x/]zum!2

~]t/]zum!
1T0F lnS r0

]~ t,x!

]~z,m! D
2

g

g21
lnS ]t

]zU
m
D 2

1

g21G J . ~13!

Here](t,x)/](z,m)[@]t/]zum]x/]muz2]x/]zum]t/]muz# is
the Jacobian of the transformation, (z,m) define the canoni-
cal base manifold, and (t,x) embed it into real space an
time. x and ]z/]tum5T/T0 may be regarded as the fund
mental dynamical fields or at the price of introducing
additional, lower-dimensional degree of freedom in the i
tial conditions for t, the full embedding coordinates (t,x)
may be used.

It is now natural to treat the dilation fromt to z as a Weyl
transformation on the complex time manifold and rather th
rotating t→2 i t to continuez→2 i z. If ]t/]zum[]t/]zum
defines an analytic function ofz2 i z, thenrdz5b0 every-
where corresponds to the previous relationrdt5b for a
locally ideal gas with slowly varying temperature. The E
clidean continuation of Eq.~5! then becomes

SE@t,x#5 R dzE dmH 1

2

~]x/]zum!2

~]t/]zum!
2T0F lnS r0

]~t,x!

]~z,m! D
2

g

g21
lnS ]t

]z U
m
D 2

1

g21G J . ~14!

Equation ~14! separates field fluctuations associated w
particular solutions from the coordinate slicing of the surfa
on which they are defined. As a result, lack of an expliciz
or m dependence in the action implies conservation of c
rents across constant-z or -m surfaces, which are now we
defined, via Noether’s theorem.

The lapse component]t/]zum of the embedding, relating
temperatureT to a canonical reference temperatureT0
51/kBb0, may also now be dynamically constrained. If
Lagrange multiplier is added to set]t/]zum constant, Eq.
~14! reverts to Eq.~5!, describing isothermal sound. A close
volume, so constrained, becomes an ideal-gas reservoir.
stack can be similarly represented and the scalar couplins
replaced with a series of local constraints, giving a fu
variational description of the engine/stack/reservoir syste

The Ceperley engine is thus modeled, as shown in Fig
as a collection of one-dimensional regions of ideal gasN
11 separate volumes are labeled with mass coordin
$m0 , . . . ,mN%. The finite, periodic regionm0 is the resona-
tor, two semi-infinite regionsm1P(2`,0) andmNP(0,`)
will be respectively hot and cold reservoirs, and finite v
umes $m2 , . . . ,mN21% represent thermal repository pos
tions along the stack. If larger values ofnj /2[1/(g j21)
are chosen in regionsj 51, . . . ,N than for j 50, the specific
heat in the reservoirs and stack can be made arbitrarily la
and thermal fluctuations suppressed to any desired deg
-

n

-

e

r-

he

.
3,

es

-

ge
ee,

relative to those of adiabatic sound in the resonator. In
way, isothermal constraints are arbitrarily well approx
mated.

A constraint action is then introduced to equate the te
perature of the gas instantaneously at a point in the reson
to that of a component of the stack or a reservoir:

SC[ R dz(
j 51

N

l jF E dm0

]t0

]z
d~x02x0

j !

2E dmj

]t j

]z
d~xj2xj

0!G
1 i R dz lHE dm1 d~x11`!S ]t1

]z
2bHD

1 i R dz lCE dmN d~xN2`!S ]tN

]z
2bCD . ~15!

Hered(x02x0
j ) is some highly peaked, nonlinear function

the embedding coordinatex0(z,m0), resembling a Dirac
delta function, and thex0

j are a sequence of constants rep
senting positions at the heat exchangers and along the s
Since x0 and t0 are both functions of any given poin
(z,m0), the auxiliary field l j enforces a constraint on
]t0 /]z only when the spatial coordinatex0 also takes value
x0

j . Similarly, thed functions in the stack and reservoir re
gions constrain their temperatures at individual positionsxj

0 ,
which in the following analysis are arbitrary. Finally, twod
functions, atx152` and xN5`, place the asymptotes o
the reservoirs at constant lapse~inverse temperature! bH
[1/TH andbC[1/TC , respectively.

Derivations of Carnot’s theorem traditionally employ a
external mechanical load, coupled by a work termp dV to
the working fluid of the engine~wherep is pressure andV is
some variable volume!, to accumulate work while allowing a
perfectly repeatable engine cycle. The formal device of s
a load will not be used here because the driven sound m
in the resonator serves the dual purpose of both load
transport apparatus. Its internal energy, proportional toL in
the range of linear perturbations, measures work done
rather than by, the engine. The lack of a precisely perio
cycle in time will present no difficulties because energy w
be identified in the following derivation as the conserv
current associated with time-translation symmetry and its

FIG. 3. Schematic representation of the annular engine a
collection of one-dimensional ideal gas regions. The reserv
(RH ,RC) and engine (E) are demarked by the heavy solid line
The engine~shaded! comprises the resonator (j 50) and volumes
j 52 to N21 representing the stack. The reservoir coupling to
ternal, isothermal sources at infinity is indicated by the wavy lin
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2824 PRE 58ERIC SMITH
lation to heat flow shown identically, irrespective of how it
partitioned among system excitations.

B. Carnot’s theorem

The constrained Euclidean action SE@$t,x% j #
1SC@$t,x,l% j # is taken here to be the fundamental obje
encoding the degrees of freedom, symmetries, and conse
tion laws of the reversible annular engine. Symmetry bre
ing follows as a corollary becauseSE1SC is equally the
source of engine dynamics, orb0 times the free energy of a
nondynamical system in thermal equilibrium. The kine
term in (z,m) variables is nonquadratic, so its direct soluti
together with the constraints is cumbersome. For that rea
only, one uses thedeviceof rotationz→ iz and the transfor-
mation of coordinates from (z,m) to (t,m) to find the ex-
tremal solutions. Under analytic continuation back toz,
though, these must still be the classical minima of the eq
librium free energy. Such an interpretation might seem c
trived, except that the Euclidean conservation laws in co
dinates (z,m) are precisely those for the entropy flu
expressed in Carnot’s theorem, as will now be shown.

The only assumptions will be that an action exists with
Weyl symmetry like that of temperature fluctuation abo
and that the minima of the free energy are nonunique
form a continuous, degenerate set. The last condition is n
ing more than the statement that the actionSE1SC has a
spontaneously broken symmetry, in keeping with the eq
librium critical interpretation.

To condense notation, letj represent the set of dynamic
fields of the theory~the $xj% $Tj% and$l j%). A single coor-
dinatem will be used to represent the entire set of positio
$mj%. Because the cases discussed here only involve
reservoirs, it is convenient to use2`<m<m2 to denote
positions in the hot reservoir further away than some po
adjacent to the engine and similarlym1<m<` for the
asymptotic region of the cold reservoir. The remainingm2

<m<m1 are used to denote the parts of these reserv
adjacent to the engine and all positions in the resonator
stack. Departing from the convention above, to adopt a
tation more natural to Noether’s theorem, coordinate diff
entiation will be indicated with plain derivatives and partia
will be reserved for differentiation of Lagrangians with r
spect to field arguments. Subscripts will indicate which c
ordinates are being used.

Proof. First, one writes the same action in both coor
nates (t,m) and (z,m), with dt/dzum[b/b0, as above:

S5E dtE dm LS j,
dj

dtU
m

,
dj

dmU
t

, . . . D
5E dzE dm lS j,

dj

dzU
m

,
dj

dmU
z

, . . . D . ~16!

~The ellipses stand for terms involving higher orders in d
rivatives that could be admitted more generally.! It follows
that, as densities,l5(b/b0)L. The continuationz→2 i z
and periodic identification gives
t
va-
-

on

i-
-

r-

d
h-

i-

s
o

t

rs
nd
o-
-

-

-

-

SE5 R dzE dm lES j,
dj

dzU
m

,
dj

dmU
z

, . . . D . ~17!

If, as above, the eigenvalue analysis of the dynamical va
tion of S shows that time translation symmetry is broken
the ground state ofSE , it follows that given a ground state
solutionj, the transformationj→j1(e/b)dj/dzum , with e
constant, produces another of the degenerate ground s
with no change of action,

dsymSE505 R dzE
2`

`

dm eH 1

b

dj

dzU
m

]lE

]j
1

d

dzU
m
S 1

b

dj

dzU
m
D

3
]lE

]~dj/dzum!
1

d

dmU
z
S 1

b

dj

dz U
m
D ]lE

]~dj/dmuz!

1•••J . ~18!

Of course,dSE vanishes for general variation about a statio
ary point, by the Euclidean equations of motion. Choosing
one such ‘‘dynamical’’ variationj→j1(e/b)dj/dzum ,
with e constant form2<m<m1 and zero otherwise, give
the null variation

ddynSE505 R dzE
m2

m1

dm eH 1

b

dj

dzU
m

]lE

]j
1

d

dzU
m
S 1

b

dj

dzU
m
D

3
]lE

]~dj/dzum!
1

d

dmU
z
S 1

b

dj

dz U
m
D ]lE

]~dj/dmuz!

1•••J 2 R dz eS 1

b

dj

dzU
m
D ]lE

]~dj/dmuz!
U

m2

m1

. ~19!

The difference of Eq.~19! from Eq. ~18! contains only sur-
face integrals:

05 R dzS E
2`

m2

dm1E
m1

`

dmD e

bS dlE

dz U
m
D

1 R dz
e

b S dj

dzU
m

]lE

]~dj/dmuz!
DU

m2

m1

. ~20!

The practical definition of a reservoir has been assumed~an
asymptotic region in which the temperature can be taken
constant!, making it possible to pull the factors ofb out of z
derivatives. In regions of constantb, the translation inz is,
under the analytic continuation toz, simply proportional to
the translation int. Time-translation symmetry of the theor
follows from the absence of explicitt dependence in the
action, which in the reservoirs implies the absence of
explicit z dependence.~The Ceperley example above dem
onstrates these features.! The firstz integral of Eq.~20! thus
contains a total derivative on a periodic domain and vanis
identically.

The remaining average end point currents inz coordinates
@with the definition^J&[rdz J(z)/rdz of averages# must
cancel,



ie
n

co

a
rd

an

ly

us

ca
he
ca
ha

n

vo

nt.

e

ro-

ree

pen-
s,

ur-
the
ds
on

t
e

tor,

the

a-
e

nly

lf-
tive

PRE 58 2825CARNOT’S THEOREM AS NOETHER’S THEOREM FOR . . .
1

bK dj

dzU
m

]lE

]~dj/dmuz!
L U

m2

m1

50. ~21!

This average, however, is just the zero-frequency coeffic
in the Fourier expansion of these currents on the domai
z. An analytic continuation fromz to z is simply an expan-
sion in complex exponentials with contour-independent
efficients~including the zero mode!, implying that

1

bK dj

dzU
m

]l

]~dj/dmuz!
L U

m2

m1

50. ~22!

A parallel application of Noether’s theorem to the glob
time-translation symmetry can be carried out in the coo
nates (t,m). The t independence ofL gives zero variation
under a constant shift and for a more general time-
space-dependent shiftẽ, the counterpart to Eq.~19! is

ddynS505E dtE
m2

m1

dm ẽ H j̇F ]L
]j

2
d

dt U
m
S ]L

]j̇
D G

1
dj̇

dm
U

t

]L
]j8

1•••J 2E dt ẽ S j̇
]L
]j8

D U
m2

m1

5E dt ẽ E
m2

m1

dm S 2
dH
dt U

m
D 2E dt ẽ S j̇

]L
]j8

D
m2

m1

.

~23!

Hereẽ has been chosen constant inm betweenm2 andm1 ,
but a general function oft vanishing att→6`, and the
shorthand j̇[dj/dtum , j8[dj/dmu t is introduced. The
HamiltonianH is defined by the terms appearing in cur
brackets in Eq.~23!. The simple form of the kinetic term in
the (t,m) coordinates gives, for the action of the previo
sections,H5 j̇ ]L/]j̇2L. BecauseL contains logarithmic
terms representing the entropy, however, in the general
H represents the full ‘‘free-energy density’’ of the gas in t
engine. @If the device of a separately variable mechani
regulator load had been assumed, to allow the engine be
ior to be truly cyclic, the total derivative of that part ofH
representing the engine could have been chosen to va
over complete cycles and*dt*m2

m1dm (dH/dtum) would sim-

ply be the work done on the load.# The end point terms are
thus identified as the energy flux currents at the reser
boundaries~heat flux currents form6→6` and coupling
only to thermal sources!. Therefore, writing JE(t,m)
[j̇ ]L/]j8 and recalling that dj/dzum5(b/b0) j̇, l
5(b/b0)L, and in regions of constantb, d/dmuz
5d/dmu t , it follows that

b0

b S dj

dzU
m

]l

]~dj/dmuz! D 5
b

b0
JE . ~24!
nt
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-

l
i-

d

se

l
v-
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ir

From the constant-temperature heat flux relationdQ
5T dS, bJE can be recognized as the entropy flux curre
A convenient variation~23! is defined by ẽ5const on
(t2 ,t1), where (t12t2) is an integral number of engin
cycles, andẽ50 otherwise. It then follows from Eq.~22!,
Eq. ~23!, and the definition of the time average as the ze
frequency Fourier component that

E
t2

t1

dt E
m2

m1

dm S dH
dt U

m
D

5S E
t2

t1

dtD ^JE~ t,m2!2JE~ t,m1!&

5S TH

TC
21D E

t2

t1

dt JE~ t,m1!, ~25!

which is Carnot’s relation between the change in the f
energy of the engine~or optionally the load! and the heat flux
current into the cold reservoir@20#. Q.E.D.

IV. DISCUSSION: DISSIPATION
AND THE CRITICAL INTERPRETATION

The gas equations taken as the starting point in the ap
dixes result from integration over microscopic fluctuation
while the resonator modes are left explicitly dynamical. F
ther integration over resonator oscillations, leaving only
evolution of the intensity explicitly dynamical, correspon
to formation of the usual Ginzburg-Landau effective acti
for the order parameter@18#.

The mode power equation~12! for the unstable mode a
DT.Tcrit can be obtained by variation of the fields in th
action

SGL5E dt
1

2H dA*

dt

dA

dt
1

1

4
S c̄

L

DT2Tcrit

gT
D 2

A* AJ .

~26!

Here a complex mode amplitude is defined asA[AL eiw

andw is the phase of a traveling wave around the resona
referred to an arbitrary instant of time.~This indexing of the
set of degenerate traveling waves correctly provides
uniqueness of modes of differentw at nonzeroL, together
with the smoothness property that perturbations at allw be-
come identical asL→0.!

Equation~26! may be compared to the action for the c
nonical ‘‘Mexican-hat’’ symmetry-breaking potential on th
complex plane@15#,

SSB5E dt
1

2H da*

dt

da

dt
2m2a* a2

l

12
~a* a!2J . ~27!

Linear perturbation analysis of the heat engine provides o
the quadratic terms in Eq.~26!; the stabilizing higher-order
terms must come from nonlinear evaluation of the se
consistent equations at finite sound amplitude. The effec
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coupling determining the strength of the instability arou
a50 can be read from the correspondence as2m2

5@( c̄/2L)(DT2Tcrit)/gT#2.
In the classical problem, asm2 transits positively through

zero, the motion of the fielda goes from exponential insta
bility to oscillatory stability arounda50 and symmetry of
the ground state is restored. The irreversible engine with
nite Tcrit has no such regime; it transits from exponent
instability above onset toexponentialstability below. Yet the
terms in Eq.~27! through quadratic order, with realm2, are
the most general possible for an analytic action with th
symmetries, covering both sides of the symmetry-break
transition.

The only way the reversible Ceperley engine can
equivalent at theclassicallevel to an equilibrium system an
have action~27! to obtain the dynamics of the broken pha
is for Tcrit→0, as it was found to do in Appendix B. Thi
characteristic thus appears to be a necessary condition on
engine that can undergo onset in the reversible limit.
interesting open question is whether embedding the sim
actions considered here in an equilibrium partition funct
and keeping dissipative~nonanalytic! corrections to the cor-
relation functions correctly recovers nonzeroTcrit and the
exponential decay in the stable regime seen for irrevers
engines.
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APPENDIX A: TRANSPORT MEAN FIELD
AND FLUCTUATIONS

The standing-wave thermoacoustic cycle has been ex
sively analyzed and modeled@1–4,6,27#, with emphasis on
quantitative prediction as well as general scaling proper
@28#. The traveling-wave engine has received much less
tention @7,8# and reflecting limitations in current stack tec
nologies, many treatments have assumed wide-pl
standing-wave–type stacks@9,10#, which operate far from
the reversible limit and couple weakly to the Stirling cyc
@10#. No eigenvalue analysis of annulus modes in the Stirl
limit, equivalent to Ref.@2# for standing waves, has bee
performed; nor has back reaction from thermal transp
been considered to complete the treatment of the ideal
stack@8#.

A self-contained stability and transport analysis is the
fore presented in this and the following appendix. Beca
its ultimate purpose is to demonstrate the relation betwee
reversible thermoacoustic limit and global variational pr
ciples, the effects of dissipative versus conservative cond
tivity will be carefully distinguished. The back reaction
considered in some detail because, together withstack-end
boundary layers, it creates mode-dependent critical temp
tures qualitatively similar to those for standing-wave e
gines. Keeping these effects places the reversible limi
context in the more general case.

The mean temperature background is found to second
der in small sound amplitude by decomposing the expres
~8!, assuming formsT5T01T1 andr5r01r1 as functions
of x, with the 0-subscripted quantities defined to be sta
The background valuev0 will be taken as 0. This gives
Hr0F]T1

]t
1v

]T0

]x
1~g21!T0

]v
]xG5H 01r1F]T1

]t
1v

]T0

]x
1~g21!T0

]v
]xG1

]

]xS ~ k̃r!0

]T0

]x D
1r0Fv

]T1

]x
1~g21!T1

]v
]xG1

]

]xS ~ k̃r!0

]T1

]x
1~ k̃r!1

]T0

]x D1•••J 1•••J.
(A1)
The oscillatory part at linear order must vanish by itse
giving

r0F]T1

]t
1v

]T0

]x
1~g21!T0

]v
]xG

5
]

]xS ~ k̃r!0

]T1

]x
1~ k̃r!1

]T0

]x D . ~A2!

For small conductivities and small absolute temperat
variations, the temperature and density dependence ofk̃ will
be ignored, the term (k̃r)1 will be dropped, and (k̃r)0 or k̃

will be treated as constant.A2k̃/v[Agdk defines a diffu-
sion wavelength@29#, the thermal boundary layer thicknes
,

e

for oscillations at frequencyv, anddk is as in Ref.@4#. In
terms of dk , the small-conductivity limit for modes with
wave numberk;2p/L is given by

dk

L
5A k̃

g2pLc
!1. ~A3!

Without stack boundaries, Eq.~A2! would be solved by an
adiabatic temperature fieldT̃1, with

]T̃1

]t
1v

]T0

]x
1~g21!T0

]v
]x

50, ~A4!
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up to terms ofO(dk /L)2 associated with conductivity in th
bulk. To focus attention on the transport properties ass
ated with the stack, quadratic terms indk /L will be assumed
smaller than all terms that are kept.

The adiabatic solution, which does not generally sati
the boundary conditionT150 at the stack ends, can be au
mented by considering a solutionT18 of

]T18

]t
5k̃

]2T18

]x2
~A5!

of the approximate form

T1852T̃1FQx,xC
e2~11 i !ux2xCu/Agdk

1Qx.xH
e2~11 i !ux2xHu/Agdk1OS dk

L D G . ~A6!

Here Q are Heaviside functions and the subscripts indic
where Q takes value 1. The combined functionT15T̃1

1T18 satisfies Eq.~A2! up to O(dk /L) and T150 at the
edges of the stack. It is now natural to define the phys
coupling functions

s8[s1~12s!Re@Qx,xC
e2~11 i !ux2xCu/Agdk

1Qx.xH
e2~11 i !ux2xHu/Agdk#,

d[2~12s!Im@Qx,xC
e2~11 i !ux2xCu/Agdk

1Qx.xH
e2~11 i !ux2xHu/Agdk#. ~A7!

These functions have the forms shown in Fig. 2.s8 simply
extends the conductive region of the stack in a frequen
dependent way and as long ass is sharper thanAgdk , its
particular form does not matter.d defines the transition re
gion between adiabatic and isothermal behavior, as will
seen explicitly below. Using these definitions, the correct
T1 to the background can be given everywhere in terms
the adiabatic solutionT̃1, asT15T̃1@12(s82 id)#.

The remaining, second-order contribution to Eq.~A1!
must then vanish separately. Only its constant part is con
ered in the mean-field approximation; for oscillations ofv at
frequencyv the remaining terms have frequency 2v. Com-
puting the cycle average of two oscillatory functionsa and
b from their complex forms as explained in Ref.@4#,
^ab&5Re(a* b)/2, and solving the continuity equation~1! to
leading order to obtain,r1 /r05( i /v)]v/]x, the second-
order term can be reduced to
i-

y

e

al

y-

e
n
f

d-

]

]xS ~ k̃r!0

]T0

]x D5g^r1v&
]T0

]x
2

r0^v2&
v

]

]xS ]T0

]x
d D1~g21!

3H p0

v
dF2K S ]v

]xD 2L 2
1

T0

]T0

]x

]

]xK v2

2 L G
2

r0

v

]

]xS T0d
]

]xK v2

2 L D
2^r1v&F ]

]x
~T0s8!2

]T0

]x
~12s8!G J .

~A8!

An approximation consistent with thin boundary layers a
no flow impedance in a stack of lengthd!L is that ^v2&
'const across the boundary layers and even across the s
Therefore, a characteristic scale factor for the intensity
sound in the engine is

L[
^v2&

k̃v
. ~A9!

Alternatively written,L/25^(dx)2&/gdk
2 , where^(dx)2& is

the mean squared displacement of fluid due to the so
wave.~For reference, for 500-Hz oscillations of helium, wi
a sound speedc;1000 m/s anddk<1 mm, sound pres-
suresr1 /r0;1% correspond to values ofL;10. Therefore,
it is conventional to consider gas displacements compar
to the boundary layer thickness sweeping into and out of
ends of the regenerator.!

Integration of Eq.~1! gives the condition for continuity of
convective mass transport]/]x^r1v&50. Taking (k̃r)0 as a
constant, a characteristic wave number for a given traveli
wave solution indexed by an integerj can then be defined a

kj[
^r1v&k̃v

~k̃r!0^v2&
5

K i
]v
]x

v L
^v2&

. ~A10!

For waves with a significant standing component, inform
tion about their position in relation to the stack can be re
resented by a parametera, with

akj
2[

K S ]v
]xD 2L
^v2&

. ~A11!

Equation~A8! can then be grouped to read

]

]xH F 1

L
1d~x!G]T0

]x
2kj@g22~g21!s8~x!#T0J

5~g21!kjF2akjd~x!T02s8~x!
]T0

]x G . ~A12!

Solutions to the homogeneous equation, obtained by se
the left-hand side equal to zero, actually contain everyth
interesting about Eq.~A12!. This can be seen by definin



ifi

p
g
a

e
lo

s
f

s

a

g

n
s a
the

ge

vec-
ion.

t
for
ns-
ed

ia-
the
e-
so
cle
Ex-

be
ich

2828 PRE 58ERIC SMITH
rescaled boundary layer functionss̃[s8e6akjAgdk(s81d) and
d̃[de6(g21)kjAgdk(s81d). From the definitions ~A7!, it
follows that ]s8/]x57(s81d)/Agdk and ]d/]x
56(s82d)/Agdk , respectively, atxH and xC , so Eq.
~A12! can be written

]

]xH F 1

L
1 d̃~x!G]T0

]x
2kj@g22~g21!s̃~x!#T0J '0.

~A13!

Here the approximately equals sign indicates small mod
cations in the shape of the terms that have been kept,only in
the middle of the boundary layer where the particular sha
of s8 andd have no effect on the qualitative form or scalin
of the solution. Because the changes are by scale factors
not constant offsets, they will not modify the asymptotic r
lations between heat current and sound power derived be
and the difference between Eq.~A13! and the homogeneou
part of Eq.~A12! will not be visible in results at the orders o
g21 andkjdk kept. ~Therefored ands8 will be retained in
the notation.!

From the energy conservation relation~6! and the form
~7! for the heat flux, suppressing terms of orderv3, the total
mean energy current through the region without source
given to second order by

g21

~ k̃r!0L
K grvT

g21
2

k̃r

g21

]T

]xL
no source

5kjg
2T02

1

L

]T0

]x
~T1 adiabatic!

5kjgT02
1

L

]T0

]x
~T1[0!. ~A14!

These are the two forms appearing in Eq.~A13! on either
side of the boundary regiond, wheres8 takes values 0 and
1, respectively~working to linear order ing21). This veri-
fies that energy conservation is maintained within the me
field approximation and shows thatd defines the transition
region between adiabatic and isothermal sound.

The solution of Eq.~A13! is by means of an integratin
factor. Defining a dilated coordinate

dz[
1

11Ld~x!
dx, z~xH![0, z~xC![zC,

~A15!

and the argument of the integrating factor

j~z![LkjE
0

z

dz8@g22~g21!s8#, ~A16!

the exact solution to Eq.~A13! is given by
-

es

nd
-
w

is

n-

T0~z!5TH

E
z

zC
dz8e2[ j~z8!2j~z!]

E
0

zC
dz8e2j~z8!

1TCe2[ j~zC!2j~z!]

E
0

z

dz8e2j~z8!

E
0

zC
dz8e2j~z8!

. ~A17!

The imaginary partd of the boundary layer, rather tha
being the working term as in the thermoacoustic cycle, i
parasitic loss region. Its effect can be seen by examining
leading term in the exact solution~A17! at large sound level.
In the midadiabatic return path of the annulus for lar
LkjL, the second term in Eq.~A17! is exponentially sup-
pressed and the first term approaches the constant value

T0~z!;THexpS 2~g21!kjE
0

L/2 dxs8~x!

1

L
1d~x!D . ~A18!

The temperature in the adiabat is thus determined by con
tion of whatever emerges at the hot end of the source reg
Explicit integration, using the forms~A7! for s8 andd, gives

1

Agdk
E

0

L/2 dx s8~x!

1

L
1d~x!

'
L

2
~L&1!

' lnL ~L@1! ~A19!

and leads to a scaling relation forT0 of the form

T0~z!

TH
;e2~g21!kjAgdk~L/2! ~L&1!

;L2~g21!kjAgdk ~L@1!. ~A20!

For rms gas displacement less thandk , the gas emerges a
nearly the temperature of the hot exchanger. However,
larger displacements, at which isothermal sound is tra
ported out of conductive contact with the strongly coupl
source, energy must be drawn from the backgroundT0 to
provide the fluctuating temperature component of the ad
batic sound. This cools the gas below the temperature of
hot exchanger. The transport relations will show that m
chanical work is drawn from the sound wave to do this,
the boundary layer in effect implements a refrigeration cy
that consumes part of the gain produced by the stack.
amples of the solution~A17! are shown in Fig. 4.

The action of the stack as a Stirling regenerator can
checked by evaluating the comoving entropy change, wh
in the stack interior is given by

K rT
ds

dt L 5
1

g21
^r1v&

]T0

]x
52

]

]x
j reg. ~A21!
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Adding this contribution to the convected enthalpy te
gives

K rvT

g21
1 j regL

stack

50. ~A22!

FIG. 4. Forms of the background temperature profile for vary
wave number and sound intensity. Wavelength is one cycle in
periodic domain in all frames; the boundary layer width can be s
from graphs of s8 and d. The sequence ofL values is L
5$0.01,0.05,0.1,0.5,1.0%, in order from the solid line to the mos
distorted profile. Source temperatures are normalized, withTH

2TC)/TC50.1.
Thus the strongly coupled regenerator permits no entha
flow downstream with the gas, as desired. As noted by C
erley @8#, heat must flow in the stack, in the direction opp
site the wave transport. This can be seen by evaluating
work flux current

j work5^rvT&5^r1v&T0 . ~A23!

j work is not conserved, so energy conservation in the st
requires abackwardheat flux current to power the pumpin
of the gas.

The discontinuity of the heat flux current at the stack en
gives the net heat flow from the sources because the w
flux is continuous through those points. The dependenc
the heat flowQ̇ into the cold reservoir~out of the engine! on
the state of the engine is

Q̇out,C5
1

g21
~ k̃r!0kjLH Fg2T02

1

kjL

]T0

]x G
cons

2~g21!TCJ . ~A24!

The total energy current may be evaluated in the midad
batic range, whereT0 takes a simple form, and conservatio
then ensures that this has the same value at the stack e
In the scaling regimes considered above, this current beh
as

g21

~ k̃r!0 kjg
2L

Q̇out,C→e2~g21!kjAgdk~L/2! TH

2
g21

g2
TC ~L&1!→L2~g21!kjAgdk TH

2
g21

g2
TC ~L@1!. ~A25!

Meanwhile, the work flux undergoes a very complicat
behavior in passage through the cold boundary layer,
stack, and the hot boundary layer. The loss of transpo
pressure through the latter indicates that work is being d
to pump heat in the hot boundary and the complemen
result is a dumping of energy in the cold boundary lay
because the temperature oscillations of the adiabatic so
are not permitted to pass through the stack. The work dif
ence that actually drives an increase of sound in the engin
not the naive valuêr1v&(TH2TC), which corresponds to
the idealized gain in Ref.@7#, but rather that obtained interio
to the boundary layers, where the gas is adiabatic

D j work'g^r1v&@T0~xH1;Agdk!2T0~xC2;Agdk!#.
~A26!

As can be seen in Fig. 4, this difference can be much sma
than the value at the stack ends. The stability analysis
sound modes in the background of the mean tempera
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field ~A17! will provide an explicit definition for the effec-
tive positions at whichT0 should be evaluated in Eq.~A26!.

APPENDIX B: LINEAR STABILITY AND QUALITY

The coordinate transformation method for extracting
genvalues and eigenvectors in this section, which reco
the short-stack gain result at zero dissipation@8#, may be
seen as an explicit prescription for self-consistently integ
ing out oscillator fluctuations to produce the Ginzbur
Landau potential for mode amplitudes of Sec. IV.

The velocity modes and frequencies may be found in
arbitrary thermal background because the coordinates
one-dimensional motion can be dilated or contracted to c
pensate for the effects of nonuniform temperature, a
which the eigenmodes appear as uniform traveling wave
the new coordinates.

The expansion for the heat term~A1! is substituted into
the equation of motion~9!, giving, at linear order inv,

d2v

dt2
5gP0

]

]mH ]v
]xS 12

g21

g
~s82 id! D

2
1

gT0

]T0

]x
~s82 id!vJ . ~B1!

This can be cast as an eigenvalue problem using the i
product defined by integration over the periodic domain

2 R dx
1

gT0
v*

d2v

dt2
5 R dx

]v*

]x H S 12
g21

g
~s82 id! D ]v

]x

2
1

gT0

]T0

]x
~s82 id!vJ ~B2!

~where an asterisk denotes complex conjugation!. The case
g21→0 will be considered first because it affords a use
simplification of the kinetic term. Defining

w0* [
1

gT0

]T0

]x
~s82 id!, ~B3!

one looks for solutions to the equation

l* v* 52
]2v*

]x2
2w0*

]v*

]x
, ~B4!

from which Eq.~B2! gives

v2

c̄2
[

v2 R dx

gT0
v* v

R dx v* v
5l* . ~B5!

Diagonalization of Hermitian operators is easier than
general matrices, so it is useful to consider thepair of eigen-
value relations that can be obtained from Eq.~B4! for the
same solutionv,
-
rs

t-
-

n
or
-
r
in

er

l

r

l* R dx v* v52 R dxS ]2v*

]x2
1w0*

]v*

]x D v,

l* l R dx v* v5 R dxS ]2v*

]x2
1w0*

]v*

]x D
~B6!

3S ]2v

]x2
1w0

]v
]xD .

The second equation will be used to identify a diagonali
tion algorithm based on a sequence of coordinate tra
formations. First, define a zeroth-order iteration varia
w0[]v/]x, reducing unnecessary derivatives. Equation~B6!
becomes

l* R dx v* v52 R dxS ]w0*

]x
1w0* w0* D v,

l* l R dx v* v5 R dxS ]w0*

]x
1w0* w0* D

~B7!

3S ]w0

]x
1w0w0D .

Next define a dummy coordinatey0[x to standardize nota
tion for an iterated sequence. Choosing an arbitrary but fi
physical location to take value 0 in all the succeeding co
dinate systems, make the definitions,; i>0,

w ī[
1

R dyi

R dyiw i ,

f i 11[E
0

yi
dyi8~w i2w ī !,

wi[e2 f i 11wi 11 , ~B8!

dyi[dyi 11e22 Re~ f i 11!,

w i 11[w ī e
22 Re~ f i 11!.

After performingN such changes of variable, Eq.~B7! takes
the form
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l* R dx v* v52 R dyNS ]wN*

]yN
1wN* wN* D

3S )
i 51

N

e2 f iv D ,

l* l R dx v* v5 R dyNS ]wN*

]yN
1wN* wN* D

3S ]wN

]yN
1wNwND . ~B9!

The main points of the construction are these. Each indep
dent eigenpair (v,l) maps to an independent solutionwN at
any given orderN. Each independent value ofl* l does the
same. The Hermitian operator can be diagonalized in
coordinates that are convenient and the resulting diagona
tion must be unique as long as the values ofl* l are unique
~which will be seen to hold!. The motivation for the se-
quence of definitions~B8! is that successive coordina
transformations progressively strip higher harmonic cont
from the oscillatory functionsw i . For instance, withs8 a
simple step,w0 has discontinuous values,w1 only discon-
tinuous first derivatives, etc. Explicit consideration of t
coefficientsw ( j ) of individual harmonics in an expansio
w05( jw

( j )e2p jxi /L shows that these decay with each ite
tion roughly as (w̄NL/ j p)N. The requirement tha
(w̄NL/ j p)N→0 is nothing more than a stipulation that th
pipe as an acoustic resonator controls the leading form of
sound modes and not the perturbation introduced byw0.
Thus at largeN, wN converge to a constant. In that limit, th
diagonalization is elementary, though the relation tov in the
original coordinates no longer is. Therefore, define

y[ lim
N→`

yN ,

w̄[ lim
N→`

wN , ~B10!

e2 f[ lim
N→`

)
i 51

N

e2 f i.

In terms of these, the eigenvaluel may be written using Eq
~B9! as

l5~k21 ikw̄ !
R dy

R dy eikyS e2 f
v
vR

D , ~B11!

wherek is any wave number allowed in the periodic doma
of y, vR is an arbitrary reference scale for velocities, andv is
the solution corresponding tow52 ike2 ikyvR under the co-
ordinate transformation. The denominator of Eq.~B11! can
be evaluated entirely in terms off andk as
n-

y
a-

t

-

e

1

vR
R dy eiky~e2 fv !5 R dy e2 f ~y!E

y

0

du~ ik !eikue2 f ~y2u!

3e22 Re[f ~y2u!] . ~B12!

The way this solution works can be seen by consider
the case of an indefinitely extended stack,w05const, equiva-
lent to the idealized analysis of Ref.@7#. This is an ‘‘Esche-
rian’’ temperature profile, increasing uniformly at all poin
in a periodic domain~hence unphysical!, for which w05w̄,
f i50 ; i , dy5dx, 2 ik v5w, and rdy eiky(e2 fv)
5rdy eikuuy

05rdy. Therefore,

l* 5~k22 ikw0* !5v2
R dx

1

gT0

R dx

5
v2

c̄2
. ~B13!

The real parts of mode eigenvalues are not affected, w
the traveling wave with current in the same direction as
temperature gradient has a negative imaginary part an
exponentially growing, and its conjugate is damped with
same time constant.

In physically meaningful cases wherew0Þconst, the
leading-order approximation tow̄ is still given by taking the
average value of Eq.~B3! to yield

ReS v2

c̄2 D 'k22
k

L R dx
1

gT0

]T0

]x
d,

~B14!

ImS v2

c̄2 D '
2k

L R dx
1

gT0

]T0

]x
s8.

These values are then corrected by the perturbations tok, w̄,
and the denominator in Eq.~B11! from higher-order har-
monic content off .

Including working terms proportional tog21 in Eq.~B1!
does two things. If the modificationid(g21)/g to the ki-
netic term is treated as a perturbation, the remaining cor
tions to Eq.~B2! can be absorbed in a redefined coordin
dx[dx8@12s8(g21)/g#. Settingy05x8, the iterative re-
duction is performed as before. While the form of th
leading-order approximation~B14! for v2 is the same, the
temperature profile is modified by the boundary layer effe
described in Appendix A. In particular, the form

ImS v2

c̄2 D '
2k

L R dx
1

gT0

]T0

]x
s8

[
2k

L
@ lnT0~xH1;Agdk!2 lnT0~xC2;Agdk!#

~B15!

provides the definition of the effective temperature diffe
ence appearing in Eq.~A26! in terms of the frequency-
dependent coupling strengths8. For large L or higher
modes~largekjL), the thermal impedance mismatch can r
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duce the effectiveD j work driving the engine to zero at finite
transport because the temperature difference at the end
the boundary layers in Fig. 4 goes to zero.

When the kinetic perturbationid(g21)/g is added, its
first-order effect on a solution withk'kj , as defined in Eq.
~A10!, is to induce apositiveimaginary shift

v2

c̄2
→

v2

c̄2
1 i

g21

g

R dx
]v*

]x

]v
]x

d~x!

R dx v* v

'
v2

c̄2
1 ik j

2a
g21

Ag

dk

L
, ~B16!

independent of transport and determined solely by the ve
ity gradients in the boundary layers. Taking the square r
.

.

A

n
he

th

g,
,

ex
int
nd
of

c-
ot

of Eq. ~B14!, also fork'kj , gives the leading dependenc
of the real and imaginary wave numbers on the stack te
perature difference wheng21→0:

ReS v

c̄
D 'ukj u7

1

2L R dx
1

gT0

]T0

]x
d,

~B17!

ImS v

c̄
D '7

1

2L R dx
1

gT0

]T0

]x
s8.

The expressions for the reversible and irreversible eigen
quencies may now be inserted into the definition~11! of the
quality factor to show that its inverse is linear inDT in all
cases and that the offset term giving a nonzeroTcrit comes
entirely from irreversible effects and vanishes in the reve
ible limit.
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