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Onset in thermoacoustic engines, the transition to spontaneous self-generation of oscillations, is studied here
as both a dynamical critical transition and a limiting heat engine behavior. The critical transition is interesting
because it occurs for both dissipative and conservative systems, with common scaling properties. When
conservative, the stable oscillations above the critical point also implement a reversible engine cycle satisfying
Carnot's theorem, a universal conservation law for entropy flux. While criticality in equilibrium systems is
naturally associated with symmetries and universal conservation laws, these are usually exploited with global
minimization principles, which dynamical critical systems may not have if dissipation is essential to their
criticality. Acoustic heat engines furnish an example connecting equilibrium methods with dynamical and
possibly even dissipative critical transitions: A reversible engine is shown to map, by a change of variables, to
an equivalent system in apparent thermal equilibrium; a Noether symmetry in the equilibrium field theory
implies Carnot's theorem for the engine. Under the same association, onset is shown to be a process of
spontaneous symmetry breaking and the scaling of the quality factor predicted for both the rewardible
irreversible engines is shown to arise from the Ginzburg-Landau description of the broken phase.
[S1063-651%98)00209-9
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I. INTRODUCTION: THERMOACOQUSTIC ONSET AS A and connections at the stack ends to hot and cold reservoirs
CRITICAL TRANSITION [4]. The temperature difference between the reservoirs im-
poses a thermal gradient on the stack. For gradients below a
The local gas dynamics and mode stability of variouscritical value determined by properties of the gas and reso-
thermoacoustic engines are subjects treated extensively, apdtor, the gas is quiescent, the reservoirs exchange heat only
in considerable quantitative detail, in the acoustics Iiteratureby conduction, and any sound excited in the resonator decays
[1-10. Many global engine properties, though, in particularexponentially. As the gradient approaches the critical value
the striking qualitative resemblance of the driven sound infrom below, the time constant for decay of the fundamental
tensity to the order parameter in a classical critical tl’anSitionresonator mode diverges or, equiva|ent|y, the inverse of its
have not been considered at all. The critical interpretation ofuality factor goes to zerfb]. For driving gradients above
thermoacoustic onset is developed here because it exposgg critical value, from quiescent initial conditions, oscilla-
two relations between equilibrium and dynamical critical tions of the lowest mode are spontaneously generated and
systems, which may have expressions as more general prifhitially grow exponentially, later slowing as the sound in-
ciples. The first is that reversibility, in some sense, is indistensity approaches some saturation value. (Regativé in-
tinguishable from equilibrium. The second is that Carnot'syerse quality factor above the critical gradient describes the
theorem, a thermodynamic transport relation for enginesgrowthtime constant and is the smooth continuation of the
may be viewed as a consequence of spontaneous symmeifyerse quality function for decay, through the critical point
breaking, describing a Noether current for the symmetry hidfg]. If the driving gradient is reduced to critical from above,
den by the critical transition. the saturation value of sound in the engine goes to zero with
Complete generality is not attempted in this derivation.some steep slop.1].
Rather, the approach is to demonstrate these relations by a This process corresponds heuristically to a classical phase
thorough analysis of a specific engine and then show in whatansitions as follows: Statistical phonons in the resonator,
respects it represents more general cases. Though no compaough classical field excitations, are the “microscopic” de-
rable, global treatment of the particular cycle considered hergrees of freedom of the system. For thermal driving gradi-
has been done before, enough of the results coincide witBnts below critical, their mean value is zero and time trans-
those in the standard thermoacoustics literature that straighfation, which implies conservation of energy in the engine/
forward aspects of the dynamical analysis are relegated tgeservoir system, is alsdtrivially) a symmetry of the
two appendixes, so the main text can focus on issues Qflassical sound background. Above the critical gradient, sta-
criticality. tistical phonons “freeze” into the coherent sound mode
implementing the engine cycle. While time translation is still
a continuous symmetry of the microscopic dynamics and en-
ergy in the engine/reservoir system is still conserved, this
A simple thermoacoustic engine consists of a gas resonaymmetry is not manifest in the excited mode, which is pre-
tor, a stack of plates or matrix of pirigenerically called a served only under discrete shifts by a multiple of the cycle
“stack”) in the flow stream of the gas to act as a regeneratorperiod.

A. Heuristics
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The intensity of excited sound at saturation thus serves agation of energy. The only requirements are reversibility,
an order parameter and the temperature gradient along tlexpressed as the equivalence to equilibrium, finite tempera-
thermoacoustic driving stack, appropriately nondimensionalture, and spontaneously broken time-translation invariance,
ized with the mean engine temperature and sound wavewhich defines the engine cycle. Recovery of Carnot’s theo-
length, is the effective coupling controlling the transition. rem from the correct, minimal set of physical conditions will
The stable intensity in the running state has the nonanalytibe argued to validate the mapping from the reversible engine
dependence on the couplirglentically zero for gradients to its equivalent equilibrium representation, and the symme-
below critical, finite for gradients aboyeharacteristic of tries uncovered may provide a starting point for analysis of
equilibrium critical systems with spontaneously broken sym-dissipative cases.
metry[12].

The symmetry broken by onset is time translation in the C. Phonon engines at finite temperature

engine/reservoir system. Phase coherence of the working o . . . .
S . . : Much of the practical interest in thermoacoustic engines is
cycle has long-range order in time, consistent with the iden-

LA . . o " due to their simplicity{4]; realistic working fluids are near-
tification of the running engine state as its “frozen” state. . : : .
. ideal gases and a wide neighborhood of onset is well de-
From this correspondence, one would expect a thermoacous-_. o : .
. . o . . Scribed with linear acoustics and second-order, mean-field
tic engine on the critical point to be characterized by phase: o .
. . : . transport. All relevant excitations are thus phonons, with
coherent episodes of running of all durations, with some . i :
o . resonator modes and the statistical fluctuations that define
scale-free(e.g., 1f) statistics. The running state near the . e . ) .

" ; : the ideal gas differing only in scale. A simple requirement of
critical point should display a weak coherent background, ! .

, . . . ; .consistency, that all phonons be defined on the same con-
with superposed phase noise having a possibly universal dI%— uration space. induces the Noether symmetrv leading to
tribution [13] (phase fluctuations being the Goldstone modecg ts th pace, y y 9
generated by local time translation of the coherent back- armot's teorem. ' . . '
ground The field theory for fixed-temperature ideal gas is defined

No such nontrivial scaling properties of onset have beer?" atcortr?prlfg,l]pletrlodlcl t_|me cy(ljl_nd?r _Bby_ th? (Ij\/latstgbara
measured14]. However, the inverse of the quality factQr, constructio - 11S ana yJ.['C coordinate 15=1, t denoting
ical time andr periodic at the inverse temperature. An
S

a temporal coherence length in units of cycle period, ha vsis of the simplified ible th ? e i
been studied for standing-wave engitleough onset[5,6]. analysis of the Simplilied, reversible thermoacoustc cycie 1s
presented below, in Sec. Il, which extends this construction

Measured 1) was linearly proportional to the driving gra- . . . .

dient, in agreement with stack gain predictions. This Cla:;siIO |ncIude_ all modes in the engine/reservoir system on an

cal scaling relation will be shown below to correspond to aequal footing. : S .

mean-field prediction of Ginzburg-Landau theory and pro-. Any gssumphon of rever5|b|I|ty !mpllcr[ly requires that
integration over small-scale statistical fluctuations lead to

vides one indication that onset is critical. corrections that can be absorbed into a conservative effective
action. The action satisfying this requirement locally for the
ideal gas is given in Sec. Il A. The reservoir and stack cou-

In equilibrium systems, criticality is generally associatedplings that define a thermoacoustic engine from a simple
with spontaneous symmetry breakifigp] because such tran- ideal gas resonator are then introduced in Sec. Il B and the
sitions create scale-free correlations at finite physical temwhole-engine dynamics derived in two appendixes. That
peratureq 16]. A corollary of this association, that critical analysis shows both that a nontrivial engine cycle is pre-
systems have degenerate frozen backgrounds related by higerved in a well-defined reversible limit and how phenom-
den symmetries, has profound implications, such as Goldenological couplings, first introduced in the equations of mo-
stone’s theorenfil7]. However, whereas the symmetries of tion, can be incorporated as Lagrange multipliers to extend
equilibrium critical systems can often be encoded in a clasthe local action for the ideal gas to a variational description
sical Ginzburg-Landau free ener§$8], dynamical critical of the whole engine/reservoir system.

B. Criticality and symmetry

processes are often intrinsically dissipatifE9], so their A further consistency requirement is then imposed in Sec.
governing equations cannot be obtained from the conservdH: that the coordinate slicing and associated current conser-
tive sector of a classical action alone. vation laws of the local Matsubara manifold be extendible

Acoustic heat engines are interesting in view of this di-globally. This requirement identifies the change of field vari-
chotomy because versions exist with either intrinsically dis-ables representing the reversible engine as an equilibrium
sipative [3,4], or nonintrinsically dissipative cyclef7,8]. critical system, in Sec. lll A. The conservation law associ-
Onset is much the same at the level of the equations of maated with spontaneous time-translation breaking is then
tion in both cases, but as will be shown below, the nondisshown to be Carnot’s theorem, proved in a general form in
sipative engine may be mapped by a change of field variSec. Il B. That the one universal theorem for reversible en-
ables to an equilibrium system, described by a classical fregines is implied by precisely these consistency conditions is
energy, with a spontaneously broken symmetry and importaken as theia posteriorijustification and also as a check on
tant associated conservation law. the assumption of reversibility.

The one universal relation satisfied by all reversible en- The relation of Q scaling to the Ginzburg-Landau de-
gines is Carnot’s theoref20]. It is shown here that, for the scription of the equilibrium system and the way the classical
reversible(necessarily nondissipativéhermoacoustic cycle, equivalence to equilibrium would become inadequate for a
Carnot’s theorem is implied by a Noether symmetry of thereversible engine with a nonzero critical temperature are dis-
equilibrium action functional, in the same manner as consereussed briefly in Sec. IV.
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total mass of gas In Lagrangian coordinateg(t,m) is a
dynamical embedding field ang=(Jx/dm) L. The local
velocity v=(dx/dt),, and the convective derivative is
(d/dt) = (alat)y+v(dldx),. It follows that (9/dx),

= p(a/am);; subscripts may now be omitted without ambi-
guity and the continuity equation is a tautology:

1 B 2d (9X_ Jv
axiom) — P dtlam/~ " Plox

dp d

FTRRT! : (]

For particle masg and Boltzmann'’s constakyg;, units with
FIG. 1. Geometric arrangement of the annular thermoacousti&g /u=1 will be assumed.
stack engine. Short parallel lines beneath the arrows represent heat Inviscid, nonconductive equations of motion and a con-

exchangers and the longer parallel lines represent the prime movetraint of adiabatic evolution are generated by the effective
stack. Squares represent reservoirs at the indicated temperaturesaction

Il. VARIATIONAL DESCRIPTION OF THE ACOUSTIC v2 T
STIRLING ENGINE S:f dt § dm[7_T1+T
Before approaching Carnot's theorem in general terms, it Y )
is necessary to show that a reversible, all-phonon engine is
definable, has onset properties representing the more genefd@he m integral is periodic when describing the resonator
case, and can be described completely with an action prirgas) Variation of Eq.(2) with respect tox gives
ciple. This is not possibl¢in any elementary wayfor the
intrinsically irreversible, standing-wave “thermoacoustic do P
cycle” [3,4], which is driven by phase-lagged conduction ——=——(pT), 3
transverse to the gas flow, in a finite-width boundary layer. dt Jm
Ceperley observefl7], however, that the different pressure/
velocity phasing of traveling waves transports heat by
Stirling cycle[22], so in principle an annular resonator can
be driven reversibly at finite work flux23]. The driving
conduction will be seen to be in phase with temperature fluc-
tuations and thus compatible with variational representation, _ 1 T p
. S—Sp= In——In—=0. 4
as expected for a reversible cycle. y—1 Ty " po
The Ceperley engine is shown schematically in Fig. 1. An
annular resonator of circumferente filled with an ideal The action(2) may bedefinedby the requirement that it
gas, is connected thermally to two reservoirs at temperaturggcover these equations of motion and constraint, but it is
T, and T and otherwise mechanically and thermally iso- also the analytic continuation of the usual free energy, except
lated. The connection is through heat exchangers a distan¢eat x and T may vary, subject to the constraitd). The
d<L apart, at either end of a prime mover stack. continuation is performed by rotating— —ir to give the
The Ceperley stack resembles the standing-wave $tdck Euclidean action
except that pure in-phase conduction takes place only at the
base of thermal boundary layers, so the stack plate spacing 1

identifying the equation of statp=pT. Variation with re-
pect toT gives conservation of the specific entropy at co-
moving coordinatem,

dx 2+ T
dr y—1

must be assumed much smaller than the thermal penetration —iS—Sg=
depth. The idealized stack function in the Stirling limit is to

enforce a constraint of fixed temperature. Viscosity and im- 1 T p
pedance mismatches from complex flow, either in the stack _T[TllnT__ In—
or around the annulus, will be ignorég4]. Because conduc- Y o Po
tive structure transverse to the gas flow is not needed, the

resonator may be modeled as a periodic, one-dimensional ZJ dr fﬁ dm[u—Ts]+( f dr kBT) So-
volume of ideal gas; with appropriate parameter choices be-

low, this description will then be extended to include all (5
parts of the engine.

N=¢dm/ u is the number of particles and the internal energy
of the gas(kinetic energy plus enthalpyis u=(dx/d7)?/2
+T/(y—1). If the coordinater is made periodic with period
The variational description of the adiabatic ideal gas isB=1/kgT, thenSc— BF, whereF is the usual free energy of
simplest in Lagrangian coordinates. Time is labetednd the microcanonical ensemble, up to additive constants that
position in the gas is labeled by an accumulated mass coodo not depend ol or x. 1/(y—1)=n/2, wheren is the
dinatem, from some arbitrary comoving origifi.e., for a  number of independent degrees of freedom in the usual eg-
positionx in the annulusm= [*p dx modM, wherep is the  uipartition computation of the thermodynamic free energy
mass density as a function of position and time &hds the  [25]. Thusy=c,/cy has the correct dependence mHi20].

A. Action for the adiabatic ideal gas
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The field theory based on E(p) has the Matsubara form the second term on the right-hand side of ). Energy is
[21]. (dx/d7)?%/2 may be recognized as the specific kinetic conserved wheneverTds/dt= — j .ong/ 9%, for an arbitrary
energy density of the free phonon gas and is the only term igonduction currenf.,,q. The first term on the right-hand
a “bare” free-phonon action. Correlations in an effective side of Eq.(6) is the divergence of the work flux current
theory for long-wavelength modes are obtained by integravpT. The convected enthalpy currept T/(y—1) comes
tion over the short-wavelength statistical fluctuations. At uni-from expanding the convective derivative on the left-hand
form temperature ang=0, this average produces the equi- side. Convected kinetic energy is of ordet and will be
librium free energyF, the form of which shows that both the ignored.
correction to the specific energy densityand the specific Away from the stack, energy is conserved and the stan-
entropys are local quantities. If the average is performed aslard phenomenological conduction current is
an operator expansion about slowly varyinghe same local
terms correct the bare equations of motion generated by the ky JT
free-phonon actioi26]. For a nondissipative system, how- Jcond™ — 1P ox @)
ever, it must be possible to reabsorb these corrections into Y
the effective action, and local correspondence with the €qughere  is the thermal diffusivity[4]. (It is convenient to
tion of state generated by the equilibrium free energy the
requires that action to take the for(®). (In other words, one
can define the nondissipative, variallg- action as the sum
of actions for ideal gas parcels, separated by imaginary insu-

lating boundaries, so that the compression of each parcel b omoving enthalpy. Therefore, as observed for both Stirling

the walls of its neighbors is that of an equilibrium ideal gas. d K led stack®,9], longitudinal q
The Matsubara condition that all correlations on the Euclig-2"¢ More weakly coupied stacks, 3], longitudinal conduc-

eanr contour continue analytically tbthen implies that the t'sgrmbtgei dsggl(ii(e((:jagzm r?)?/ig;surgfgc:? \;ﬁzlst?écllt(v(\:/grd T]%V;',;
Euclidean effective action generating them continues to th ' P Y Y

dynamica fon(2, Requing ht i repesentaonbe - (T e (0 somverisate o e gen 1 1o Sack
variant, up to scale changes, irrespective of where the divi- P :

sion between dynamical and statistical phonons is drawn, igvfitﬁoangﬁt'}g%vé? ;Tiuﬁgi%knr\zv;l)l :cr)lerii?iﬁeb&;%eiggfed
equivalent to requiring a scale-invariant treatment of a”tr'b tions gf ad'agat'c and 'sotherm%l evolution of the en-
phonons in the system. foutl ! ' ' volutl

tropy,

réiefine a rescaled diffusivitx=xy, absorbing the ratio of
specific heats, to reduce later notatjon.

The constraingT/dt=0 of perfect thermal coupling, as-
med to hold in the interior of the stack, does not conserve

B. Addition of conductivities q P ST
S ~
As noted, one expects that although the Ceperley cycle (y— 1)pTa=5( Kp&)(l—(f)

requires conductive effects, in the reversible limit only those

that can be incorporated in modifications of the actit@s

and(5) should be needed. However, dissipative conductivity +
is useful as a regulator when solving the equations of motion

and extends the solutions to encompass a range of Mog, solve for the behavior of the engine,will be taken as a
physically realistic models. Therefore, both conservative andjmple scalar function, identically 1 inside the stack, identi-
dissipative conductivities will be included temporarily in the cally 0 outside the heat exchangers, with some smooth tran-
dynamical equatlon§ and the dissipative t_erms tak_en t0 ZeIQtional behavior between the two regions.dfis nearly a

at the end. The main resonator may be given a simple phegen, function, boundary layer effects will define the physical

nomenological bu_lk conductivity, while_conductive effects _in coupling dynamically, independently of the detailed form as-
the stack are defined from the outset in terms of the deswegumed_ To then relate the solutions to symmetries of the

o. (8)

oT DoT Jv
—_ + — R
pU— (y—=Dp X

constraint of rjonfluctuati.ng temperature. . ideal gas, the scalar function will be replaced with a dynami-
The evolution of the internal energy of some comoving | representation of the local reservoir positions along the
region of the gas follows from the equation of moti8): stack and an equivalent implementation «efix) in the ac-
tion, via Lagrange multipliers.
d mzd v?
dt my m 2 * v—1 C. Stability and transport results
fmzd P . +Td|np +Tds The wave equation is the time derivative of £g):
=) O O om PO T g T Tt
d 9 T&U (y—1) Tds ©
my d ds 2 am YPT o ~ (= DT
= ——(vpT)+T— dt
fml dm( am(VPT) dt]

(recovering the speed of sound for small perturbations as
_ JX(mZ’t)dx _i( )+ _I_d_s ®) ykeT= uc? whends/dt=0). Its solution with the entropy
ax P Plat evolution of Eq.(8) gives the stability properties of resonator
modes. For the annular engine, however, the absence of pres-
Bulk conductivity and source coupling specify the form of sure boundaries makes imposed temperature gradients a

X(mq,t)
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which is relevant to the saturation value of the sound inten-
sity A. However, becaus8, a dissipative, pure loss term, is
not needed to define the working cycle, it can be eliminated

by takingk—0. As long as the stack plate spacing remains

smaller than the boundary layer thickne$gs,= V2«/w in
the limit, ¢’ — o, but otherwise the conductive coupling re-
mains unchanged.

The final result of the appendixes is that the scaling de-
pendence of the quality factor on the temperature difference
Tyu—Tc and on mode number is the same as for the
standing-wave cadé]. The quality factoiQ is defined from
the imaginary part of the modal eigenfrequency for each

Y2 8 — f—

e *H mode, as given in EqB17), by
FIG. 2. Form of the boundary-layer coupling functiom$ and
0. 1 dinA -2 Im(w)
0T edt e (D

more important impedance discontinuity than they are for
standing waveg9], so the phasing of the modal eigenvectors i
cannot %e assujglar%ewpriori}.:) g g For perturbations about =0, Egs.(B17) and(11) reduce at
Equations (8) and (9) will therefore be solved self- €ading order in  Ty—Tc)/Tc=AT/T to —1/Q
consistently to second order in small sound pressures. Wit A T/27] ¥T for modej, giving a growth time independent
angular brackets denoting the time average of any quantit§f mede number. Corrections from effects such as bulk con-
over some complete number of cycles, the mean and oscifuctivity and losses in boundary layessof finite thickness,
latory parts of the temperature field are given in termg of S given in Eq(B16), modify the reversible result to
by the average of E(8) outside the stack:

d~ dT
A B
whereT i/ T= a(y—1)k;\y3,(w) andk; is the wave num-

Vanishing of linear-order oscillations relates temperature tder of thej™ mode in the resonator. Therefore, modes with
velocity fluctuations and the static mean temperature is thesither steeper velocity gradients or greater projection of those
solved in terms of the transport invariants around the annugradients onto the boundary regions also suffer larger critical
lus, represented by the cycle averages of second-order quatemperatures to onset. This too is in qualitative agreement
tities as in Ref[4]. The algebra for these steps is performedwith the results of Ref[5]. Though this model omits too
in Appendix A. many physical effects for more direct comparison to be

The resulting static backgrounidis then substituted into  meaningful, it does show that the qualitative dependence of
Eqg. (9), which is solved as an eigenvalue-eigenvector probmodal onset parameters on various gain and loss effects is
lem at linear order to find the independent modeand their  similar for the traveling-wave and the standing-wave cycles,
frequencies in Appendix B. The mean temperature solutionshen both operate in irreversible regimes.
of Eq. (10) are parametrized by sound intensity, convected
mass transport, and a parametemwhich measures the ratio
of standing to traveling components in the eigenfunction and
the standing component phase. In general, they do not cor- In Eq. (5), the periodicity of the Matsubara manifold was
respond to purely real frequencies for the oscillating compodefined in terms of the temperatufe This prescription is
nents, so small instabilities are assumed, to permit sensibkraightforward for isothermal equilibrium systems, but not
cycle averages. obviously sensible il is a dynamical field, because then the

At nonzero dissipative conductivity, boundary layers atcoordinates for fluctuations are defined in terms of the fluc-
the ends of the stack are found to extend the original,reakuations themselves. Yet the adiabatic changes of state in a
valued coupling strengtho to a complex coupling reversible transformation strongly resemble otherwise mean-
(o' —1i6), given in Eq.(A7) and shown in Fig. 2. The real ingless scale transformations in the description of an equilib-
part of the differencer’ — o merely hides the detailed form rium system. Therefore, it should be possible to ensure well-
of the coupling function at the stack ends in a conductivedefined coordinate slicing of the Matsubara manifold, while
transition region. This thermal averaging will be exploited admitting temperature fluctuations, by regarding temperature
below to model the stack region as a set of discrete, mutuallgs a metriclike scale factor and different states of the adia-
decoupled thermal reservoifSwift's “bucket brigade”[4],  batic ideal gas as identical up to classical rescalings of some
though for the Stirling cycle each tied by & function of  canonical base manifold. The transformation from physical
temperature to the instantaneously adjacent volume of gas embedding coordinates to the canonical base manifold de-
the resonator. fines the equivalent equilibrium system and assumes physical

The imaginary part of the dynamical coupling per-  significance of the new conservation law associated with
forms an interesting refrigeration cycle in realistic models,scale transformations.

1 1 AT—Tgi
-_——= (12)

a1 a1 Q 27j yT
_+U_
at X

Jv
+(y— 1)T(?_x . (10

Ill. REVERSIBILITY AS EQUILIBRIUM



PRE 58

A. The equivalent equilibrium system

One may transform Lagrangian coordinates franm{ to
a new set ¢,m), with dt/9z| ,= B/ B, to place Eq(2) in an
equivalent form

B 1 (9x19z|m)? a(t,x)
S[t,x]—f dzf dm{i—(at/aﬂm) +T, ln(po—a(z,m))
0% ot 1
—mM(E m) —m } (13)

Hered(t,x)/d(z,m)=[dt/ 3z| nox/dm|,— dx/ dz| ,at/ dm|,] is
the Jacobian of the transformatiorz, i) define the canoni-
cal base manifold, andt,,k) embed it into real space and
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FIG. 3. Schematic representation of the annular engine as a
collection of one-dimensional ideal gas regions. The reservoirs
(R4 ,Rc) and engine E) are demarked by the heavy solid lines.
The engine(shadedl comprises the resonatoj£0) and volumes
j=2 to N—1 representing the stack. The reservoir coupling to ex-
ternal, isothermal sources at infinity is indicated by the wavy lines.

time. x and 9z/4t|,,=T/T, may be regarded as the funda- relative to those of adiabatic sound in the resonator. In this
mental dynamical fields or at the price of introducing anway, isothermal constraints are arbitrarily well approxi-
additional, lower-dimensional degree of freedom in the ini-mated.

tial conditions fort, the full embedding coordinateg,X)
may be used.
It is now natural to treat the dilation fromto z as a Weyl

A constraint action is then introduced to equate the tem-
perature of the gas instantaneously at a point in the resonator
to that of a component of the stack or a reservoir:

transformation on the complex time manifold and rather than

rotatingt— —ir to continuez— —i¢. If dt/dz|,=d7/d¢|
defines an analytic function af—i¢, thenédl= B, every-
where corresponds to the previous relatipdiz= 8 for a

locally ideal gas with slowly varying temperature. The Eu-

clidean continuation of E(5) then becomes

- 1 (x| m)? a(7,X)
sdr= § e dm(i @rdodlm '”(p°a<§,m>)
0% aT 1
—mM(a—g m)—m ] (14)

N
_ | ALY
So= fars n| [ am 2 aaxh)

(9’7'] 0
—f dmja—gé(xj—xj)

J
i 3gd§ fo dmy S(x+o0) [?L;—BH)
J
i 3§dg xcf dmy, 5(xN—oc)<(9L£N—,8c). (15)

Equation (14) separates field fluctuations associated withHerea(xo—xp) is some highly peaked, nonlinear function of
particular solutions from the coordinate slicing of the surfacethe embedding coordinatey({,mp), resembling a Dirac

on which they are defined. As a result, lack of an explicit

delta function, and tha}, are a sequence of constants repre-

or m dependence in the action implies conservation of cursenting positions at the heat exchangers and along the stack.

rents across constagtor -m surfaces, which are now well
defined, via Noether’s theorem.

The lapse componemtr/ d¢|,, of the embedding, relating
temperatureT to a canonical reference temperatufg

Since Xy and 7y are both functions of any given point
(£,mg), the auxiliary field \; enforces a constraint on
dto/d¢ only when the spatial coordinaig also takes value

x{ . Similarly, the § functions in the stack and reservoir re-

=1/kgBy, May also now be dynamically constrained. If a gions constrain their temperatures at individual positbq%,s

Lagrange multiplier is added to sétr/d¢|,, constant, Eq.

which in the following analysis are arbitrary. Finally, twb

(14) reverts to Eq(5), describing isothermal sound. A closed functions, atx;= — and xy=0, place the asymptotes of

volume, so constrained, becomes an ideal-gas reservoir. Thke reservoirs at constant lapg@verse temperatuyeSy

stack can be similarly represented and the scalar coupling =1/T,; and 8c=1/T¢, respectively.

replaced with a series of local constraints, giving a fully Derivations of Carnot’s theorem traditionally employ an

variational description of the engine/stack/reservoir system.external mechanical load, coupled by a work tesnaV to
The Ceperley engine is thus modeled, as shown in Fig. 3he working fluid of the enginéwherep is pressure an¥! is

as a collection of one-dimensional regions of ideal dés.

some variable volumeto accumulate work while allowing a

+1 separate volumes are labeled with mass coordinatgserfectly repeatable engine cycle. The formal device of such

{mg, ... ,my}. The finite, periodic regiom, is the resona-
tor, two semi-infinite regionsn; e (—,0) andmy e (0,)

a load will not be used here because the driven sound mode
in the resonator serves the dual purpose of both load and

will be respectively hot and cold reservoirs, and finite vol-transport apparatus. Its internal energy, proportional tim

umes {m,, ..
tions along the stack. If larger values of/2=1/(y;—1)
are chosen in regions=1, ... N than forj =0, the specific

.,my_1} represent thermal repository posi- the range of linear perturbations, measures work done on,

rather than by, the engine. The lack of a precisely periodic
cycle in time will present no difficulties because energy will

heat in the reservoirs and stack can be made arbitrarily largee identified in the following derivation as the conserved
and thermal fluctuations suppressed to any desired degregjrrent associated with time-translation symmetry and its re-
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dé
,d_gm

lation to heat flow shown identically, irrespective of how it is
partitioned among system excitations. Sg= ff) dé“J dm\g| €

am . ) 17
¢

If, as above, the eigenvalue analysis of the dynamical varia-
tion of S shows that time translation symmetry is broken by

The constrained Euclidean  action Sg[{7,x};]  the ground state of:, it follows that given a ground state
+Sc[{7.x,\};] is taken here to be the fundamental objectSO|UtI0f1§ the transformatio— ¢+ (e/ 8)dé/d¢|,, with €
encoding the degrees of freedom, symmetries, and conservéonstant, produces another of the degenerate ground states,
tion laws of the reversible annular engine. Symmetry breakWith no change of action,
ing follows as a corollary becaus®:-+ S is equally the
source of engine dynamics, @ times the free energy of a 1 d¢ a)\E 1d¢
nondynamical system in thermal equilibrium. The kinetic Ssymoe=0 fﬁdgj dm G{B d{ dg‘ (5 d¢ )
term in (£,m) variables is nonquadratic, so its direct solution m

B. Carnot’s theorem

together with the constraints is cumbersome. For that reason INg 1 dé INg

only, one uses thdeviceof rotation{—iz and the transfor- Xm ,g dz m
mation of coordinates fromz(m) to (t,m) to find the ex-

tremal solutions. Under analytic continuation back &p

though, these must still be the classical minima of the equi- te ] (18)

librium free energy. Such an interpretation might seem con-
trived, except that the Euclidean conservation laws in coorOf course,8Sg vanishes for general variation about a station-
dinates ¢,m) are precisely those for the entropy flux ary point, by the Euclidean equations of motion. Choosing as
expressed in Carnot’s theorem, as will now be shown. one such “dynamical” variationé— £+ (e/ B)dé/d{]|y,

The only assumptions will be that an action exists with awith e constant form_<ms=m, and zero otherwise, gives
Weyl symmetry like that of temperature fluctuation abovethe null variation
and that the minima of the free energy are nonunique and

form a continuous, degenerate set. The last condition is noth- 1dél ang d
ing more than the statement that the act@mSc has a  SgynSe=0 § d{ dm E(ﬂ ac T +d_§ (Ed_g“ )
spontaneously broken symmetry, in keeping with the equi- m m
librium critical interpretation. INg INg

To condense notation, Iétrepresent the set of dynamical Xt — (— — )—
fields of the theory(the{x;} {T;} and{\;}). A single coor- d(d¢ld]m)  dmi | B d¢ m d(d¢/dmly)

dinatem will be used to represent the entire set of positions m
- : 1 d¢ INE +

{m;}. Because the cases discussed here only involve two + .. dZ e _

reservoirs, it is convenient to usecc<m=<m_ to denote '8 dg &(dg/dm|§) m_

positions in the hot reservoir further away than some point

adjacent to the engine and similarty, <m=w for the  The difference of Eq(19) from Eq. (18) contains only sur-

asymptotic region of the cold reservoir. The remainmg  face integrals:

(19

s=m=m, are used to denote the parts of these reservoirs

adjacent to the engine and all positions in the resonator and d\g
stack. Departing from the convention above, to adopt a no- 0= § dg( f dm+f dm)B( d§
tation more natural to Noether’s theorem, coordinate differ- e

entiation will be indicated with plain derivatives and partials INg m,
will be reserved for differentiation of Lagrangians with re- § d¢ ﬁ(dg dgTW) (20

spect to field arguments. Subscripts will indicate which co-
ordinates are being used.
Proof. First, one writes the same action in both coordi- The practical definition of a reservoir has been assu(aed
nates {,m) and (z,m), with dt/dz|,= /B, as above: asymptotic region in which the temperature can be taken as
constank, making it possible to pull the factors @f out of ¢

dé derivatives. In regions of constapgt the translation iry is,
=f dtf dm £( E— —, ) under the analytic continuation & simply proportional to
dt|, ‘dmi, the translation irt. Time-translation symmetry of the theory
follows from the absence of explicit dependence in the
dg dé ) P AT
fdzf dm = (16)  action, which in the reservoirs implies the absence of an
dz 'dm z explicit { dependence(The Ceperley example above dem-

onstrates these featurg$he first{ integral of Eq.(20) thus
contains a total derivative on a periodic domain and vanishes
(The ellipses stand for terms involving higher orders in de4dentically.
rivatives that could be admitted more generally.follows The remaining average end point currentg icoordinates
that, as densitiesh =(8/By)L. The continuationz— —i¢  [with the definition(J)=¢d¢ J({)/$d{ of averagef must
and periodic identification gives cancel,
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1/dé¢ INg > m., From the constant-temperature heat flux relati®@

= =72~/ =0. 21) = -

B\ d¢| a(agram,) (21) T dS BJe can be recognized as the entropy flux current.
m_ A convenient variation(23) is defined by e=const on

_ o - (t,ty), where ¢, —t_) is an integral number of engine

This average, however, is just the zero-frequency coefficiendycles, ande=0 otherwise. It then follows from E¢22),
in the Fourier expansion of these currents on the domain ofq, (23), and the definition of the time average as the zero-
{. An analytic continuation frond to z is simply an expan-  frequency Fourier component that
sion in complex exponentials with contour-independent co-

ty m, dH

f dt dm|——
t m

efficients(including the zero modeimplying that
m, _ m_ dt
ty
m_ :(f dt)(JE(t,m_)_JE(t,m+)>
t_

1/d¢ ~
3\ &z =0. (22

2N
LO(déldm|,)

A parallel application of Noether’s theorem to the global
time-translation symmetry can be carried out in the coordi- (T
nates {,m). Thet independence of gives zero variation ¢
under a constant shift and for a more general time- and hich | ation b he ch i the f
space-dependent shi the counterpart to Eq19) is which is Carnot's relation between the change in the free

P P lﬂ P a19 energy of the enginéor optionally the loagfland the heat flux
current into the cold reservaj20]. Q.E.D.
my ~ |-
saps=0= [ at| "amz | &
m_
dé

T am

T
g

)f”dt Je(t,m,), (25)
t_

L d oL
o dt] | gk

L, ] JdtN(.gM) m,
— “ e _— E
N og' ]|

~[a :*dm(—%m)—jdtz(gj—g)

IV. DISCUSSION: DISSIPATION
AND THE CRITICAL INTERPRETATION

The gas equations taken as the starting point in the appen-
dixes result from integration over microscopic fluctuations,
while the resonator modes are left explicitly dynamical. Fur-

my ther integration over resonator oscillations, leaving only the

. evolution of the intensity explicitly dynamical, corresponds

m_ to formation of the usual Ginzburg-Landau effective action
for the order parametgd.g].

(23 The mode power equatiofi2) for the unstable mode at
_ AT>T,; can be obtained by variation of the fields in the
Here e has been chosen constanhirbetweerm_ andm,_, action

but a general function of vanishing att— =, and the

shorthand é=d¢/dt|,,, &' =dé&/dm|, is introduced. The . — 2
Hamiltonian 7 is defined by the terms appearing in curly 86sz dtl did_AJrE(E AT—Tcm) A*A]
brackets in Eq(23). The simple form of the kinetic term in 2 dt dt  4\L 4T '
the (t,m) coordinates gives, for the action of the previous (26)

sections,H= ¢ dL19&— L. Becausel contains logarithmic _
terms representing the entropy, however, in the general cagere a complex mode amplitude is definedAss A e'¢

H represents the full “free-energy density” of the gas in theand ¢ is the phase of a traveling wave around the resonator,
engine.[If the device of a separately variable mechanicalreferred to an arbitrary instant of timgrhis indexing of the
regulator load had been assumed, to allow the engine behaset of degenerate traveling waves correctly provides the
ior to be truly cyclic, the total derivative of that part &  uniqueness of modes of differept at nonzeroA, together
representing the engine could have been chosen to vanigtith the smoothness property that perturbations atpattie-

over complete cycles angit/ " *dm (d?/dt|,,) would sim- ~ come identical as\—0.) .
- Equation(26) may be compared to the action for the ca-

nonical “Mexican-hat” symmetry-breaking potential on the
Eomplex plang 15],

ply be the work done on the loddThe end point terms are
thus identified as the energy flux currents at the reservoi
boundaries(heat flux currents fom. — =% and coupling
only to thermal sources Therefore, writing Jg(t,m)
=¢dL/9¢' and recalling that d&/dZ,=(B/Bo)é, A\ B 1fda* da ,
=(BIBo)L, and in regions of constantg, d/dm|, Ssp= th dat dt “ a*a—l—z(a*a) - (@7)
=d/dm|;, it follows that

Linear perturbation analysis of the heat engine provides only

Bo/ dé N B the quadratic terms in Eq26); the stabilizing higher-order
—0(— —> =—Jg. (24)  terms must come from nonlinear evaluation of the self-
pldz m&(dgldmm Bo consistent equations at finite sound amplitude. The effective
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coupling determining the strength of the instability aroundment of Energy, Office of Basic Energy Science, Engineer-
a=0 can be read from the correspondence -ag? ing and Geoscience Contract No. W7405-ENG-36.

Yy T 2
=[(cl2L)(AT—Teu)/yT]" APPENDIX A: TRANSPORT MEAN FIELD

. 2 . ..
In the clas§|cal problem, gs° transits positively 'thrc')ugh AND FLUCTUATIONS
zero, the motion of the field goes from exponential insta- . .
bility to oscillatory stability arounda=0 and symmetry of ~_ The standing-wave thermoacoustic cycle has been exten-

the ground state is restored. The irreversible engine with fiSively analyzed and modeldd—4,6,217, with emphasis on
nite T has no such regime; it transits from exponentialq”a”t'tat've prediction as well as general scaling properties

instability above onset texponentiaktability below. Yet the [28].‘ The traveling-wave engine has received much less at-
terms in Eq.(27) through quadratic order, with real2, are tention[7,8] and reflecting limitations in current stack tech-

. X . . nologies, many treatments have assumed wide-plate,
the most general possible for an analytic action with thes%tanding—wave—type stack®,10], which operate far from
symmetries, covering both sides of the symmetry-breakin AP

" %he reversible limit and couple weakly to the Stirling cycle
transition.

: . [10]. No eigenvalue analysis of annulus modes in the Stirling
The only way the reversible Ceperley engine can byt equivalent to Ref[2] for standing waves, has been

equivalent at thelassicallevel to an equilibrium system and performed; nor has back reaction from thermal transport
have action(27) to obtain the dynamics of the broken phasepeen considered to complete the treatment of the idealized
is for Tey—0, as it was found to do in Appendix B. This stack[8].
characteristic thus appears to be a necessary condition on any A self-contained stability and transport analysis is there-
engine that can undergo onset in the reversible limit. Anfore presented in this and the following appendix. Because
interesting open question is whether embedding the simpligs ultimate purpose is to demonstrate the relation between a
actions considered here in an equilibrium partition functionreversible thermoacoustic limit and global variational prin-
and keeping dissipativenonanalyti¢ corrections to the cor- ciples, the effects of dissipative versus conservative conduc-
relation functions correctly recovers nonzefg,, and the tivity will be carefully distinguished. The back reaction is
exponential decay in the stable regime seen for irreversiblgonsidered in some detail because, together wigitk-end
engines. boundary layers, it creates mode-dependent critical tempera-
tures qualitatively similar to those for standing-wave en-
gines. Keeping these effects places the reversible limit in
ACKNOWLEDGMENTS context in the more general case. _
The mean temperature background is found to second or-
| would like to thank N. Chotiros for providing an oppor- der in small sound amplitude by decomposing the expression
tunity to present a preliminary version of this work at a meet-(8), assuming form3 =T+ T, andp=py+ p; as functions
ing of the Acoustical Society of America, and A. Atchley for of x, with the 0-subscripted quantities defined to be static.
discussions. Financial support was provided by the Departfhe background value, will be taken as 0. This gives

{ My AT o) [ [dTy dTo ) 9 - dT

Pol or TV ox (y=1) 05|~ Pl TV (y=1) 0ox | 5x (KP)OW
R L ) O RN PO S AT I O }
Po| U IX (y ) 1% X (KP)oaX (KP)laX s

(A1)

The oscillatory part at linear order must vanish by itself,for oscillations at frequencw, and §, is as in Ref[4]. In
giving terms of §,, the small-conductivity limit for modes with
wave numbek~2/L is given by

5“—\/ x <1 (A3)
L y?mLc '

. Without stack boundaries, E¢A2) would be solved by an
For small conductivities and small absolute temperature

o , - adiabatic temperature fieffl;, with
variations, the temperature and density dependenegevdfi
be ignored, the termxp); will be dropped, and#p), or «

will be treated as constant/2x/w=\/y5, defines a diffu- JITa . ITo
sion wavelengtf29], the thermal boundary layer thickness ot X

&T1+ ﬁT0+ 1T v
Po ot Uax (y )O&x

Jd
T oX

aT,

- - 0T,
((KP)OWJF(KPMW)- (A2)

Jv
H(y=)To =0, (A4)
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+(y—1)

up to terms ofO( 8, /L)? associated with conductivity in the a( ~ T, dTg  polv?) a[dT,
oX

bulk. To focus attention on the transport properties associ-, (KP)OW) = 7<plv>5_X_T 5—)((55

ated with the stack, quadratic termsdp/L will be assumed

smaller than all terms that are kept. Po aw\?\ 1 9Ty 9 [v?
The adiabatic S(_)I_ution, which does not generally satisfy X ;5 2 9x _T_o ox ox\ 2
the boundary conditioif;=0 at the stack ends, can be aug-
mented by considering a solutidr{ of _Po d J v_2
w x|\ %7ox\ 2
2 (o) = (Too") =221 ')]
JaTy 97Ty —(pw) |~ (oo ) =— = (1= ) |-
X (A8)

An approximation consistent with thin boundary layers and
of the approximate form no flow impedance in a stack of length<L is that(v?)
~ const across the boundary layers and even across the stack.
Therefore, a characteristic scale factor for the intensity of
sound in the engine is
T:,I_: _Tl ®X<Xce—(l+l)‘x—xc|/vy§K

%” (A6) E%'

Alternatively written,A/2=((8x)2)/y52, where((8x)?) is

the mean squared displacement of fluid due to the sound
Here ® are Heaviside functions and the subscripts indicatevave.(For reference, for 500-Hz oscillations of helium, with
where © takes value 1. The combined functioh;=T, a sound speed¢~1000 m/s ands,<1 mm, sound pres-
+T) satisfies Eq.(A2) up to O(6,/L) and T;=0 at the Suresp;/po~1% correspond to values df~10. Therefore,

edges of the stack. It is now natural to define the physicalt iS conventional to consider gas displacements comparable
coupling functions to the boundary layer thickness sweeping into and out of the

ends of the regeneratpr.
Integration of Eq(1) gives the condition for continuity of

convective mass transpattix(p,v)=0. Taking (kp), as a
constant, a characteristic wave number for a given traveling-
wave solution indexed by an integiecan then be defined as

: - (A9)
+ Oy & T O

o' =0+ (1~ O)REO, -, & (Ll

+ ®X>XHef(l+i)\X7XH\/\s“75K]’

. dv
(pv)kw :<|50>
(7<P)0<02> <02> .

For waves with a significant standing component, informa-
tion about their position in relation to the stack can be rep-

=—(1-0)Im[O,_, e~ (L+Dx=xcl/\Vyd, Kj (A10)
C

+X>XHe—(l+i)|x—xH|/\e‘75K]. (A?)

resented by a parametet with

These functions have the forms shown in Figo2.simply

extends the conductive region of the stack in a frequency- Jo\2
dependent way and as long asis sharper than/ys,, its < _v) >
particular form does not mattes defines the transition re- aki2 X

gion between adiabatic and isothermal behavior, as will be ! (v?) '

seen explicitly below. Using these definitions, the correction

T, to the background can be given everywhere in terms oEquation(A8) can then be grouped to read
the adiabatic solutiofi;, asT;=T,[1— (¢’ —i8)].

The remaining, second-order contribution to E@1) d
must then vanish separately. Only its constant part is consid- X
ered in the mean-field approximation; for oscillations cdit
frequencyw the remaining terms have frequency 2Com-
puting the cycle average of two oscillatory functicmsand =(y= Dk
b from their complex forms as explained in Re#],

(ab)=Re(a*b)/2, and solving the continuity equati¢h) to  Solutions to the homogeneous equation, obtained by setting
leading order to obtainp,/py=(i/w)dv/dx, the second- the left-hand side equal to zero, actually contain everything
order term can be reduced to interesting about Eq(A12). This can be seen by defining

(A11)

1

s dTy
At (x)

ox

—kj[vz—(v—l)tf’(x)]To]

aTo
2ak15(x)T0—a’(x)W} (A12)
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rescaled boundary layer functions= o’ e* *kj\79«(7" +9) gngd
S=0e*(r~1K¥o0"+3)  From the definitions (A7), it
follows that do'/dx=F(c'+8)/\ys, and 3dé&/dx
==*(a'—8)/\ys,, respectively, atx, and xc, so Eq.
(A12) can be written

J (|1
X

K + 5(X)

T -
X Kily*—(y—=1)o(x)]To ~0.
(A13)

Here the approximately equals sign indicates small modifi

cations in the shape of the terms that have been kapy,in

the middle of the boundary layer where the particular shape
of ¢’ and § have no effect on the qualitative form or scaling
of the solution. Because the changes are by scale factors al
not constant offsets, they will not modify the asymptotic re-
lations between heat current and sound power derived belo
and the difference between E#\13) and the homogeneous

part of Eq.(A12) will not be visible in results at the orders of

y—1 andk; 5, kept.(Therefores ando’ will be retained in
the notation).

From the energy conservation relati¢d) and the form
(7) for the heat flux, suppressing terms of ordér the total

ERIC SMITH

PRE 58

Zc ’
dz e 162 -£@)
z
To(2)=Ty

Z
“dz’e€2)
0

+Tee [z~ ¢2] 0 (A17)

The imaginary part5 of the boundary layer, rather than
being the working term as in the thermoacoustic cycle, is a
arasitic loss region. Its effect can be seen by examining the
eading term in the exact solutigA17) at large sound level.

JA the midadiabatic return path of the annulus for large

jL, the second term in EqAL17) is exponentially sup-

Wessed and the first term approaches the constant value

L2 dxo'(X)

o1
X (x)

The temperature in the adiabat is thus determined by convec-

mean energy current through the region without sources ifion of whatever emerges at the hot end of the source region.

given to second order by

v—1 <yva 7<p (9T>
(}P)OA y—1 y=10x no source

. 14T, o

:kj’y TO_K(S’_X (T, adiabatig
aT

—KiyT 0

iYTo™ % ox (T1=0).

(A14)

These are the two forms appearing in E413) on either
side of the boundary regioé, wheres'’ takes values 0 and
1, respectivelyworking to linear order iny—1). This veri-

fies that energy conservation is maintained within the mean-

field approximation and shows thatdefines the transition
region between adiabatic and isothermal sound.

The solution of Eq(A13) is by means of an integrating
factor. Defining a dilated coordinate

dz z(xy)=0, z(xc)=zc,

(A15)

=T As %
and the argument of the integrating factor
(A16)

§(z)=AKk; f:dz’[vz—(v— Do'l,

the exact solution to EqA13) is given by

Explicit integration, using the form@\7) for ¢’ and g, gives

1 fuzdx o' (X) (A=1)
Vo do 1 o 2 0T

A + 8(x)

~InA (A>1) (A19)
and leads to a scaling relation fop of the form
To(? ~e (Y DKYSUAR) (A <1
Th
~A~OmDKYO (A1), (A20)

For rms gas displacement less thgn the gas emerges at
nearly the temperature of the hot exchanger. However, for
larger displacements, at which isothermal sound is trans-
ported out of conductive contact with the strongly coupled
source, energy must be drawn from the backgroligdo
provide the fluctuating temperature component of the adia-
batic sound. This cools the gas below the temperature of the
hot exchanger. The transport relations will show that me-
chanical work is drawn from the sound wave to do this, so
the boundary layer in effect implements a refrigeration cycle
that consumes part of the gain produced by the stack. Ex-
amples of the solutiofA17) are shown in Fig. 4.

The action of the stack as a Stirling regenerator can be
checked by evaluating the comoving entropy change, which
in the stack interior is given by

dTy

ds 1 J .
PT o =m<mv>§=—&1reg- (A21)
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Thus the strongly coupled regenerator permits no enthalpy
flow downstream with the gas, as desired. As noted by Cep-
TH erley[8], heat must flow in the stack, in the direction oppo-
site the wave transport. This can be seen by evaluating the
work flux current

K¥2 8, = 0.004x

jwork=<va>=<Plv>TO- (A23)

Temperature (absolute)

jwork 1S not conserved, so energy conservation in the stack
: . -] requires ebackwardheat flux current to power the pumping
Position (x) Xc Xy of the gas.

; ; ; The discontinuity of the heat flux current at the stack ends
gives the net heat flow from the sources because the work
Ty flux is continuous through those points. The dependence of

the heat fIOV\Q into the cold reservoifout of the engingon
the state of the engine is

Thermal couplings: ¢', &

Kjy12 8, = 0.02n

. 1. .1 T,
Qout,C:m(Kp)ijA yTO_kJ-_AW

Temperature (absolute)

\ Thermal couplings: ¢, 8 cons

i’osition (xl) ch XH —( Y— l)TCJ . (A24)

kjv!/2 8= 0.04n The total energy current may be evaluated in the midadia-
batic range, wher@&|, takes a simple form, and conservation
then ensures that this has the same value at the stack edges.
In the scaling regimes considered above, this current behaves
as

Temperature (absolute)

y—1

T He—e VKT T
(kp)o kjy?A =

y—1
Y2

Te (As1)—»A- Do T,

y—1

Tc (A>1). (A25)

Temperature (absolute)

Meanwhile, the work flux undergoes a very complicated
behavior in passage through the cold boundary layer, the
stack, and the hot boundary layer. The loss of transported
pressure through the latter indicates that work is being done
to pump heat in the hot boundary and the complementary

FIG. 4. Forms of the background temperature profile for varyingresult is a dumping of energy in the cold boundary layer
wave number and sound intensity. Wavelength is one cycle in thdecause the temperature oscillations of the adiabatic sound
periodic domain in all frames; the boundary layer width can be seefare not permitted to pass through the stack. The work differ-
from graphs of¢’ and 6. The sequence of\ values isA  ence that actually drives an increase of sound in the engine is
={0.01,0.05,0.1,0.5,1}0in order from the solid line to the most not the naive valudp,v)(Ty—Tc), Which corresponds to
distorted profile. Source temperatures are normalized, wWith ( the idealized gain in Ref7], but rather that obtained interior

NN
\’- Thermal couplings: ¢', 8

Position (x) Xc XH

—Te)/Tc=0.1. to the boundary layers, where the gas is adiabatic
Adding this contribution to the convected enthalpy term _
ives Ajwore=Y{p10)[ To(Xu+ ~\¥8,) — To(Xc— ~ 78,1,
g
(A26)
ouT As can be seen in Fig. 4, this difference can be much smaller
<—+j,eg> =0. (A22)  than the value at the stack ends. The stability analysis for

y—1 stack sound modes in the background of the mean temperature
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field (A17) will provide an explicit definition for the effec-
tive positions at whichlly should be evaluated in EGA26).

APPENDIX B: LINEAR STABILITY AND QUALITY

The coordinate transformation method for extracting ei-
genvalues and eigenvectors in this section, which recovers
the short-stack gain result at zero dissipat{&h, may be
seen as an explicit prescription for self-consistently integrat-
ing out oscillator fluctuations to produce the Ginzburg-
Landau potential for mode amplitudes of Sec. IV.

The velocity modes and frequencies may be found in an
arbitrary thermal background because the coordinates for
one-dimensional motion can be dilated or contracted to com-

AN O dxv*u= édx( v +¢o*
X

2. % *
N Qdxvr*v=— ¢ dx v + x v
Ix2 Po o |V

PPv* r?v*)

v Jv
X —+@g—|.
&XZ QDO&X

pensate for the effects of nonuniform temperature, afterhe second equation will be used to identify a diagonaliza-
which the eigenmodes appear as uniform traveling waves ifion algorithm based on a sequence of coordinate trans-

the new coordinates.

formations. First, define a zeroth-order iteration variable

The expansion for the heat ter(Al) is substituted into Wo=dv/dx, reducing unnecessary derivatives. Equat®6)

the equation of motiort9), giving, at linear order i, becomes
d%v _.p d |dv -1 5
az "om| ax 5 (o' =i6)
1 9Ty 5 B1
7T oX (o"=id)v;. (B1)

This can be cast as an eigenvalue problem using the inner
product defined by integration over the periodic domain

*

\* édx v¥u=— f{)dx(W-i-gogWB‘)v,

*
M b dxoroe ¢ dx 04 pr
Xv*v= X + i W

IX

(B7)
fﬁd 1 *dzv—ﬁgd&v* y-1 5 ) W,
va F— X07X — (o' —i0) X X W""QDOWO .
1 9T, ] . . )
_’yT W(U’ —id)v (B2) Next define a dummy coordinatg=x to standardize nota-
0

tion for an iterated sequence. Choosing an arbitrary but fixed

(where an asterisk denotes complex conjugatidine case physical location to take valug (.)'in e}II the succeeding coor-
y—1—0 will be considered first because it affords a usefuldinate systems, make the definitiovs =0,
simplification of the kinetic term. Defining

— 1
QDO*E%%—(‘)(UI_M), (B3) @iEW§dyi¢iy
one looks for solutions to the equation
*v* ™ fir1= yidyi’(soi—ﬁ,
MU T (B4 ’
from which Eq.(B2) gives w=e i, . 88)
w? w? %v*v dv = —2 Re(fi,q)
:25—:)\*_ (B5) yi=dy;, € 1
jg dx v*v
<Pi+15%72 Re(fi+a),

Diagonalization of Hermitian operators is easier than for
general matrices, so it is useful to consider plagr of eigen-
value relations that can be obtained from EB4) for the  After performingN such changes of variable, E@®7) takes
same solutior, the form
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(B9)

The main points of the construction are these. Each indepen-

dent eigenpairiy,\) maps to an independent solutian, at
any given ordeN. Each independent value &f A does the

same. The Hermitian operator can be diagonalized in any
coordinates that are convenient and the resulting diagonaliza-

tion must be unique as long as the valuea 6k are unique

(which will be seen to hold The motivation for the se-
guence of definitions(B8) is that successive coordinate
transformations progressively strip higher harmonic conten

from the oscillatory functionsp; . For instance, witho’ a
simple step,po has discontinuous values,; only discon-

tinuous first derivatives, etc. Explicit consideration of the
coefficien_ts<p({)_ of individual harmonics in an expansion
@o==2pWe?™ L shows that these decay with each itera-
that

(¢nL/jm)N—0 is nothing more than a stipulation that the
pipe as an acoustic resonator controls the leading form of the

tign roughly as ENL/j’F)N. The requirement

sound modes and not the perturbation introducedely

Thus at largeN, ¢y converge to a constant. In that limit, the

diagonalization is elementary, though the relatiow tm the
original coordinates no longer is. Therefore, define

y=limyy,
N—oo

o= lim ¢y, (B10)
N—oo

In terms of these, the eigenvaldemay be written using Eq.

(B9) as

$ ay
i; dy €Y e

A= (K+ike)

(B11)

=

wherek is any wave number allowed in the periodic domain

of y, vr is an arbitrary reference scale for velocities, and

the solution corresponding = —ike v under the co-
ordinate transformation. The denominator of EB11) can

be evaluated entirely in terms éfandk as

CARNOT’'S THEOREM AS NOETHER'S THEOREM FOR ...
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i é dy éky(e v)_ é dy e f(Y)f du(lk)elkue—f(y u)

X @2 Relf(y=u], (B12)

The way this solution works can be seen by considering
the case of an indefinitely extended stagk= const, equiva-
lent to the idealized analysis of R¢¥]. This is an “Esche-
rian” temperature profile, increasing uniformly at all points
in a periodic domair(hence unphysical for which 5= ¢,
f,=0 Vi, dy=dx, —ikv=w, and ¢dy €“(e 'v)
=¢dy €<|D=4dy. Therefore,

dx—
é Ty ?
N =(K2— ikl ) = 02— 0=

édx c®

The real parts of mode eigenvalues are not affected, while
the traveling wave with current in the same direction as the
Itemperature gradient has a negative imaginary part and is
exponentially growing, and its conjugate is damped with the
same time constant.

In physically meaningful cases whergy# const, the

leading-order approximation tEis still given by taking the
average value of EqB3) to yield

1 aTO
2_
% ) k § dx’yTO &X

| w? —k
m = |~

These values are then corrected by the perturbatioks ¢o
and the denominator in EqB11) from higher-order har-
monic content off.

Including working terms proportional tp— 1 in Eq.(B1)
does two things. If the modifications(y—1)/y to the ki-
netic term is treated as a perturbation, the remaining correc-
tions to Eq.(B2) can be absorbed in a redefined coordinate
dx=dx'[1—0o'(y—1)/y]. Settingyy,=x', the iterative re-
duction is performed as before. While the form of the
leading-order approximatiotB14) for »? is the same, the
temperature profile is modified by the boundary layer effects
described in Appendix A. In particular, the form

| w? -k
M=z~

-k
= [InTo(xp+~y8,) -

(B13)

(B14)
1 9T,

X— —
'yTO X 7

!

1 9T,
X——O

'}/TO IX

!

INTo(xc—~\¥8,)]

(B15)

provides the definition of the effective temperature differ-
ence appearing in EqA26) in terms of the frequency-
dependent coupling strength’. For large A or higher
modes(largek;L), the thermal impedance mismatch can re-
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duce the effectivel j,r driving the engine to zero at finite 0f Eq. (B14), also fork~k;, gives the leading dependence
transport because the temperature difference at the ends @f the real and imaginary wave numbers on the stack tem-
the boundary layers in Fig. 4 goes to zero. perature difference whep—1—0:

When the kinetic perturbations(y—1)/y is added, its
first-order effect on a solution witk~k; , as defined in Eq.

(A10), is to induce gositiveimaginary shift Re(: ~lk|F o é A 1 3_1—05

c 2L yTo X

v* (B17)
w? w2+_7—1 fﬁd ax a_ﬁ(x) m w) 1 fﬁ 1 4T, .
=TI 3 + X———0O

c® c Y é 4% v* b c 2L T 5T, ox
5 The expressions for the reversible and irreversible eigenfre-
%w Fiki%a y—16, (816 quencies may now be inserted into the definitia) of the
\/— L quality factor to show that its inverse is linear A in all

cases and that the offset term giving a nonZggg comes
independent of transport and determined solely by the veloentirely from irreversible effects and vanishes in the revers-
ity gradients in the boundary layers. Taking the square rootble limit.
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